BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 35163413)

  • 1. Neutrophil Death in Myeloproliferative Neoplasms: Shedding More Light on Neutrophils as a Pathogenic Link to Chronic Inflammation.
    Marković D; Maslovarić I; Djikić D; Čokić VP
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelets as Mediators of Thromboinflammation in Chronic Myeloproliferative Neoplasms.
    Marin Oyarzún CP; Heller PG
    Front Immunol; 2019; 10():1373. PubMed ID: 31258539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putative Role of Neutrophil Extracellular Trap Formation in Chronic Myeloproliferative Neoplasms.
    Marković DC; Maslovarić IS; Kovačić M; Vignjević Petrinović S; Ilić VL
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underlying mechanisms of the JAK2V617F mutation in the pathogenesis of myeloproliferative neoplasms.
    Mullally A
    Pathologe; 2016 Nov; 37(Suppl 2):175-179. PubMed ID: 27796499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Neutrophilic Granulocytes in Philadelphia Chromosome Negative Myeloproliferative Neoplasms.
    Kiem D; Wagner S; Magnes T; Egle A; Greil R; Melchardt T
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jak2V617F driven myeloproliferative neoplasm occurs independently of interleukin-3 receptor beta common signaling.
    Vu T; Austin R; Kuhn CP; Bruedigam C; Song A; Guignes S; Jacquelin S; Ramshaw HS; Hill GR; Lopez AF; Lane SW
    Haematologica; 2016 Mar; 101(3):e77-80. PubMed ID: 26589916
    [No Abstract]   [Full Text] [Related]  

  • 7. Clinical and laboratory significance of defective P2Y(12) pathway function in patients with myeloproliferative neoplasms: a pilot study.
    Chang H; Shih LY; Michelson AD; Dunn P; Frelinger AL; Wang PN; Kuo MC; Lin TL; Wu JH; Tang TC
    Acta Haematol; 2013; 130(3):181-7. PubMed ID: 23751441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms.
    Tyner JW; Bumm TG; Deininger J; Wood L; Aichberger KJ; Loriaux MM; Druker BJ; Burns CJ; Fantino E; Deininger MW
    Blood; 2010 Jun; 115(25):5232-40. PubMed ID: 20385788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The clinical significance of JAK2V617F mutation for Philadelphia-negative chronic myeloproliferative neoplasms in patients with splanchnic vein thrombosis.
    Yonal I; Pinarbası B; Hindilerden F; Hancer VS; Nalcaci M; Kaymakoglu S; Diz-Kucukkaya R
    J Thromb Thrombolysis; 2012 Oct; 34(3):388-96. PubMed ID: 22569900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Progress of study on JAK2V617F mutation in myeloproliferative neoplasm].
    Chen YX; Li Y; Zhang LY; Liu B
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Oct; 19(5):1329-33. PubMed ID: 22040998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a molecular diagnostic assay for CALR exon 9 indels in myeloproliferative neoplasms: identification of coexisting JAK2 and CALR mutations and a novel 9 bp deletion in CALR.
    Murugesan G; Guenther-Johnson J; Mularo F; Cook JR; Daly TM
    Int J Lab Hematol; 2016 Jun; 38(3):284-97. PubMed ID: 27018326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the role of inflammation in the selection of JAK2 mutant cells in myeloproliferative neoplasms.
    Zhang J; Fleischman AG; Wodarz D; Komarova NL
    J Theor Biol; 2017 Jul; 425():43-52. PubMed ID: 28501635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possible role of mutated endothelial cells in myeloproliferative neoplasms.
    Farina M; Russo D; Hoffman R
    Haematologica; 2021 Nov; 106(11):2813-2823. PubMed ID: 34320782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myeloproliferative neoplasm stem cells.
    Mead AJ; Mullally A
    Blood; 2017 Mar; 129(12):1607-1616. PubMed ID: 28159736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of JAK2V617F mutation load by droplet digital PCR can aid in diagnosis of myeloproliferative neoplasms.
    Zheng CF; Zhao XX; Chen XH; Liu Z; Wang WJ; Luo M; Ren Y; Wang HW
    Int J Lab Hematol; 2021 Aug; 43(4):645-650. PubMed ID: 33973741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thrombosis in myeloproliferative neoplasms with JAK2V617F mutation.
    Sun T; Zhang L
    Clin Appl Thromb Hemost; 2013; 19(4):374-81. PubMed ID: 22826442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs).
    Dunbar A; Nazir A; Levine R
    Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.
    Shimizu T; Kubovcakova L; Nienhold R; Zmajkovic J; Meyer SC; Hao-Shen H; Geier F; Dirnhofer S; Guglielmelli P; Vannucchi AM; Feenstra JD; Kralovics R; Orkin SH; Skoda RC
    J Exp Med; 2016 Jul; 213(8):1479-96. PubMed ID: 27401344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interleukin-1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK2V617F-induced myeloproliferative neoplasm.
    Rahman MF; Yang Y; Le BT; Dutta A; Posyniak J; Faughnan P; Sayem MA; Aguilera NS; Mohi G
    Nat Commun; 2022 Sep; 13(1):5347. PubMed ID: 36100596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remodeling the Bone Marrow Microenvironment - A Proposal for Targeting Pro-inflammatory Contributors in MPN.
    Jutzi JS; Mullally A
    Front Immunol; 2020; 11():2093. PubMed ID: 32983162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.