BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 35163500)

  • 1. The Cellular and Subcellular Organization of the Glucosinolate-Myrosinase System against Herbivores and Pathogens.
    Lv Q; Li X; Fan B; Zhu C; Chen Z
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system.
    Winde I; Wittstock U
    Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specialized Vacuoles of Myrosin Cells: Chemical Defense Strategy in Brassicales Plants.
    Shirakawa M; Hara-Nishimura I
    Plant Cell Physiol; 2018 Jul; 59(7):1309-1316. PubMed ID: 29897512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system.
    Beran F; Pauchet Y; Kunert G; Reichelt M; Wielsch N; Vogel H; Reinecke A; Svatoš A; Mewis I; Schmid D; Ramasamy S; Ulrichs C; Hansson BS; Gershenzon J; Heckel DG
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7349-54. PubMed ID: 24799680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L.
    Ahuja I; Borgen BH; Hansen M; Honne BI; Müller C; Rohloff J; Rossiter JT; Bones AM
    J Exp Bot; 2011 Oct; 62(14):4975-93. PubMed ID: 21778185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae.
    Ahuja I; van Dam NM; Winge P; Trælnes M; Heydarova A; Rohloff J; Langaas M; Bones AM
    J Exp Bot; 2015 Feb; 66(2):579-92. PubMed ID: 25563968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hijacking the Mustard-Oil Bomb: How a Glucosinolate-Sequestering Flea Beetle Copes With Plant Myrosinases.
    Sporer T; Körnig J; Wielsch N; Gebauer-Jung S; Reichelt M; Hupfer Y; Beran F
    Front Plant Sci; 2021; 12():645030. PubMed ID: 34093609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds.
    Borgen BH; Thangstad OP; Ahuja I; Rossiter JT; Bones AM
    J Exp Bot; 2010 Jun; 61(6):1683-97. PubMed ID: 20219777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: A high-performance liquid chromatography approach.
    Pardini A; Tamasi G; De Rocco F; Bonechi C; Consumi M; Leone G; Magnani A; Rossi C
    Food Chem; 2021 Sep; 355():129634. PubMed ID: 33799240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense.
    Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U
    Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucosinolate Desulfation by the Phloem-Feeding Insect Bemisia tabaci.
    Malka O; Shekhov A; Reichelt M; Gershenzon J; Vassão DG; Morin S
    J Chem Ecol; 2016 Mar; 42(3):230-5. PubMed ID: 26961756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cabbage aphid: a walking mustard oil bomb.
    Kazana E; Pope TW; Tibbles L; Bridges M; Pickett JA; Bones AM; Powell G; Rossiter JT
    Proc Biol Sci; 2007 Sep; 274(1623):2271-7. PubMed ID: 17623639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemodiversity of the Glucosinolate-Myrosinase System at the Single Cell Type Resolution.
    Chhajed S; Misra BB; Tello N; Chen S
    Front Plant Sci; 2019; 10():618. PubMed ID: 31164896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of nitric oxide regulated low abundant myrosinases from seeds and seedlings of Brassica juncea.
    Sougrakpam Y; Deswal R
    Plant Sci; 2024 Feb; 339():111932. PubMed ID: 38030037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein.
    Burow M; Bergner A; Gershenzon J; Wittstock U
    Plant Mol Biol; 2007 Jan; 63(1):49-61. PubMed ID: 17139450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Myrosin cells' are not a prerequisite for aphid feeding on oilseed rape (Brassica napus) but affect host plant preferences.
    Borgen BH; Ahuja I; Thangstad OP; Honne BI; Rohloff J; Rossiter JT; Bones AM
    Plant Biol (Stuttg); 2012 Nov; 14(6):894-904. PubMed ID: 22672561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions.
    Bhat R; Vyas D
    Crit Rev Biotechnol; 2019 Jun; 39(4):508-523. PubMed ID: 30939944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative investigations of the glucosinolate-myrosinase system in Arabidopsis suspension cells and hypocotyls.
    Alvarez S; He Y; Chen S
    Plant Cell Physiol; 2008 Mar; 49(3):324-33. PubMed ID: 18202003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats.
    Rouzaud G; Rabot S; Ratcliffe B; Duncan AJ
    Br J Nutr; 2003 Aug; 90(2):395-404. PubMed ID: 12908900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant.
    Bridges M; Jones AM; Bones AM; Hodgson C; Cole R; Bartlet E; Wallsgrove R; Karapapa VK; Watts N; Rossiter JT
    Proc Biol Sci; 2002 Jan; 269(1487):187-91. PubMed ID: 11798435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.