BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 35163500)

  • 21. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates.
    Burow M; Markert J; Gershenzon J; Wittstock U
    FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus.
    Andréasson E; Bolt Jørgensen L; Höglund AS; Rask L; Meijer J
    Plant Physiol; 2001 Dec; 127(4):1750-63. PubMed ID: 11743118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores.
    Poelman EH; Van Dam NM; Van Loon JJ; Vet LE; Dicke M
    Ecology; 2009 Jul; 90(7):1863-77. PubMed ID: 19694135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase.
    Chen J; Ullah C; Reichelt M; Beran F; Yang ZL; Gershenzon J; Hammerbacher A; Vassão DG
    Nat Commun; 2020 Jun; 11(1):3090. PubMed ID: 32555161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tipping the scales--specifier proteins in glucosinolate hydrolysis.
    Wittstock U; Burow M
    IUBMB Life; 2007 Dec; 59(12):744-51. PubMed ID: 18085474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana.
    Kissen R; Bones AM
    J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular models and mutational analyses of plant specifier proteins suggest active site residues and reaction mechanism.
    Brandt W; Backenköhler A; Schulze E; Plock A; Herberg T; Roese E; Wittstock U
    Plant Mol Biol; 2014 Jan; 84(1-2):173-88. PubMed ID: 23999604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid).
    Kim JH; Lee BW; Schroeder FC; Jander G
    Plant J; 2008 Jun; 54(6):1015-26. PubMed ID: 18346197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates.
    Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B
    Proc Nutr Soc; 2007 Feb; 66(1):69-81. PubMed ID: 17343774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myrosinase: gene family evolution and herbivore defense in Brassicaceae.
    Rask L; Andréasson E; Ekbom B; Eriksson S; Pontoppidan B; Meijer J
    Plant Mol Biol; 2000 Jan; 42(1):93-113. PubMed ID: 10688132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore.
    Stauber EJ; Kuczka P; van Ohlen M; Vogt B; Janowitz T; Piotrowski M; Beuerle T; Wittstock U
    PLoS One; 2012; 7(4):e35545. PubMed ID: 22536404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory.
    Lambrix V; Reichelt M; Mitchell-Olds T; Kliebenstein DJ; Gershenzon J
    Plant Cell; 2001 Dec; 13(12):2793-807. PubMed ID: 11752388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations.
    Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B
    J Agric Food Chem; 2006 Oct; 54(20):7628-34. PubMed ID: 17002432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense.
    Barth C; Jander G
    Plant J; 2006 May; 46(4):549-62. PubMed ID: 16640593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specificity of induction responses in Sinapis alba L. and their effects on a specialist herbivore.
    Travers-Martin N; Müller C
    J Chem Ecol; 2007 Aug; 33(8):1582-97. PubMed ID: 17587140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deciphering the Myrosinase-like Activity of
    Plaza-Vinuesa L; Hernandez-Hernandez O; Sánchez-Arroyo A; Cumella JM; Corzo N; Muñoz-Labrador AM; Moreno FJ; Rivas BL; Muñoz R
    J Agric Food Chem; 2022 Dec; 70(49):15531-15538. PubMed ID: 36454042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae.
    Friedrichs J; Schweiger R; Geisler S; Mix A; Wittstock U; Müller C
    Insect Biochem Mol Biol; 2020 Sep; 124():103431. PubMed ID: 32653632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance.
    Wittstock U; Burow M
    Arabidopsis Book; 2010; 8():e0134. PubMed ID: 22303260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of specifier proteins in glucosinolate-containing plants.
    Kuchernig JC; Burow M; Wittstock U
    BMC Evol Biol; 2012 Jul; 12():127. PubMed ID: 22839361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lifetimes of the Aglycone Substrates of Specifier Proteins, the Autonomous Iron Enzymes That Dictate the Products of the Glucosinolate-Myrosinase Defense System in Brassica Plants.
    Mocniak LE; Elkin K; Bollinger JM
    Biochemistry; 2020 Jul; 59(26):2432-2441. PubMed ID: 32516526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.