These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 35163500)
21. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
22. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Andréasson E; Bolt Jørgensen L; Höglund AS; Rask L; Meijer J Plant Physiol; 2001 Dec; 127(4):1750-63. PubMed ID: 11743118 [TBL] [Abstract][Full Text] [Related]
23. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Poelman EH; Van Dam NM; Van Loon JJ; Vet LE; Dicke M Ecology; 2009 Jul; 90(7):1863-77. PubMed ID: 19694135 [TBL] [Abstract][Full Text] [Related]
24. The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Chen J; Ullah C; Reichelt M; Beran F; Yang ZL; Gershenzon J; Hammerbacher A; Vassão DG Nat Commun; 2020 Jun; 11(1):3090. PubMed ID: 32555161 [TBL] [Abstract][Full Text] [Related]
25. Tipping the scales--specifier proteins in glucosinolate hydrolysis. Wittstock U; Burow M IUBMB Life; 2007 Dec; 59(12):744-51. PubMed ID: 18085474 [TBL] [Abstract][Full Text] [Related]
26. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. Kissen R; Bones AM J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919 [TBL] [Abstract][Full Text] [Related]
27. Molecular models and mutational analyses of plant specifier proteins suggest active site residues and reaction mechanism. Brandt W; Backenköhler A; Schulze E; Plock A; Herberg T; Roese E; Wittstock U Plant Mol Biol; 2014 Jan; 84(1-2):173-88. PubMed ID: 23999604 [TBL] [Abstract][Full Text] [Related]
28. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Kim JH; Lee BW; Schroeder FC; Jander G Plant J; 2008 Jun; 54(6):1015-26. PubMed ID: 18346197 [TBL] [Abstract][Full Text] [Related]
29. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B Proc Nutr Soc; 2007 Feb; 66(1):69-81. PubMed ID: 17343774 [TBL] [Abstract][Full Text] [Related]
31. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore. Stauber EJ; Kuczka P; van Ohlen M; Vogt B; Janowitz T; Piotrowski M; Beuerle T; Wittstock U PLoS One; 2012; 7(4):e35545. PubMed ID: 22536404 [TBL] [Abstract][Full Text] [Related]
32. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Lambrix V; Reichelt M; Mitchell-Olds T; Kliebenstein DJ; Gershenzon J Plant Cell; 2001 Dec; 13(12):2793-807. PubMed ID: 11752388 [TBL] [Abstract][Full Text] [Related]
33. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations. Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B J Agric Food Chem; 2006 Oct; 54(20):7628-34. PubMed ID: 17002432 [TBL] [Abstract][Full Text] [Related]
34. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Barth C; Jander G Plant J; 2006 May; 46(4):549-62. PubMed ID: 16640593 [TBL] [Abstract][Full Text] [Related]
35. Specificity of induction responses in Sinapis alba L. and their effects on a specialist herbivore. Travers-Martin N; Müller C J Chem Ecol; 2007 Aug; 33(8):1582-97. PubMed ID: 17587140 [TBL] [Abstract][Full Text] [Related]
37. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae. Friedrichs J; Schweiger R; Geisler S; Mix A; Wittstock U; Müller C Insect Biochem Mol Biol; 2020 Sep; 124():103431. PubMed ID: 32653632 [TBL] [Abstract][Full Text] [Related]
38. Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Wittstock U; Burow M Arabidopsis Book; 2010; 8():e0134. PubMed ID: 22303260 [TBL] [Abstract][Full Text] [Related]
39. Evolution of specifier proteins in glucosinolate-containing plants. Kuchernig JC; Burow M; Wittstock U BMC Evol Biol; 2012 Jul; 12():127. PubMed ID: 22839361 [TBL] [Abstract][Full Text] [Related]
40. Lifetimes of the Aglycone Substrates of Specifier Proteins, the Autonomous Iron Enzymes That Dictate the Products of the Glucosinolate-Myrosinase Defense System in Brassica Plants. Mocniak LE; Elkin K; Bollinger JM Biochemistry; 2020 Jul; 59(26):2432-2441. PubMed ID: 32516526 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]