These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35163543)

  • 1. Virtual Combinatorial Chemistry and Pharmacological Screening: A Short Guide to Drug Design.
    Suay-García B; Bueso-Bordils JI; Falcó A; Antón-Fos GM; Alemán-López PA
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery.
    López-Vallejo F; Caulfield T; Martínez-Mayorga K; Giulianotti MA; Nefzi A; Houghten RA; Medina-Franco JL
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):475-87. PubMed ID: 21521151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual darwinian drug design: QSAR inverse problem, virtual combinatorial chemistry, and computational screening.
    de Julian-Ortiz JV
    Comb Chem High Throughput Screen; 2001 May; 4(3):295-310. PubMed ID: 11375744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorially-generated library of 6-fluoroquinolone analogs as potential novel antitubercular agents: a chemometric and molecular modeling assessment.
    Minovski N; Perdih A; Solmajer T
    J Mol Model; 2012 May; 18(5):1735-53. PubMed ID: 21833830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design.
    Ebalunode JO; Zheng W; Tropsha A
    Methods Mol Biol; 2011; 685():111-33. PubMed ID: 20981521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surrogate docking: structure-based virtual screening at high throughput speed.
    Yoon S; Smellie A; Hartsough D; Filikov A
    J Comput Aided Mol Des; 2005 Jul; 19(7):483-97. PubMed ID: 16292613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Customizable Generation of Synthetically Accessible, Local Chemical Subspaces.
    Pottel J; Moitessier N
    J Chem Inf Model; 2017 Mar; 57(3):454-467. PubMed ID: 28234470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Free-Wilson selectivity analysis for combinatorial library design.
    Sciabola S; Stanton RV; Johnson TL; Xi H
    Methods Mol Biol; 2011; 685():91-109. PubMed ID: 20981520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure based design, synthesis, pharmacophore modeling, virtual screening, and molecular docking studies for identification of novel cyclophilin D inhibitors.
    Valasani KR; Vangavaragu JR; Day VW; Yan SS
    J Chem Inf Model; 2014 Mar; 54(3):902-12. PubMed ID: 24555519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of pharmacophore information from high-throughput screens.
    Hopfinger AJ; Duca JS
    Curr Opin Biotechnol; 2000 Feb; 11(1):97-103. PubMed ID: 10679338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
    O'Reilly RK; Turberfield AJ; Wilks TR
    Acc Chem Res; 2017 Oct; 50(10):2496-2509. PubMed ID: 28915003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating DNA-encoded chemical libraries with virtual combinatorial library screening: Optimizing a PARP10 inhibitor.
    Lemke M; Ravenscroft H; Rueb NJ; Kireev D; Ferraris D; Franzini RM
    Bioorg Med Chem Lett; 2020 Oct; 30(19):127464. PubMed ID: 32768646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial chemistry in the agrosciences.
    Lindell SD; Pattenden LC; Shannon J
    Bioorg Med Chem; 2009 Jun; 17(12):4035-46. PubMed ID: 19349185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rise, fall and reinvention of combinatorial chemistry.
    Kodadek T
    Chem Commun (Camb); 2011 Sep; 47(35):9757-63. PubMed ID: 21701754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive combinatorial design of focused compound libraries.
    Schneider G; Schüller A
    Methods Mol Biol; 2009; 572():135-47. PubMed ID: 20694689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Combinatorial synthesis: an important methodology in medicinal chemistry].
    Seoane Prado C
    An R Acad Nac Med (Madr); 2005; 122(4):723-37; discussion 737-40. PubMed ID: 16776324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based generation of viable leads from small combinatorial libraries.
    Laird ER; Blake JF
    Curr Opin Drug Discov Devel; 2004 May; 7(3):354-9. PubMed ID: 15216940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery.
    Wu B; Zhang Z; Noberini R; Barile E; Giulianotti M; Pinilla C; Houghten RA; Pasquale EB; Pellecchia M
    Chem Biol; 2013 Jan; 20(1):19-33. PubMed ID: 23352136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast algorithm for searching for molecules containing a pharmacophore in very large virtual combinatorial libraries.
    Olender R; Rosenfeld R
    J Chem Inf Comput Sci; 2001; 41(3):731-8. PubMed ID: 11410053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A probabilistic approach to high throughput drug discovery.
    Labute P; Nilar S; Williams C
    Comb Chem High Throughput Screen; 2002 Mar; 5(2):135-45. PubMed ID: 11966422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.