These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 35163661)

  • 1. Genome-Wide Prediction of Transcription Start Sites in Conifers.
    Bondar EI; Troukhan ME; Krutovsky KV; Tatarinova TV
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPMiner: an integrated system for mining combinatorial cis-regulatory elements in mammalian gene group.
    Lee TY; Chang WC; Hsu JB; Chang TH; Shien DM
    BMC Genomics; 2012; 13 Suppl 1(Suppl 1):S3. PubMed ID: 22369687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures.
    Morton T; Petricka J; Corcoran DL; Li S; Winter CM; Carda A; Benfey PN; Ohler U; Megraw M
    Plant Cell; 2014 Jul; 26(7):2746-60. PubMed ID: 25035402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.
    Kumari S; Ware D
    PLoS One; 2013; 8(10):e79011. PubMed ID: 24205361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TSS seq based core promoter architecture in blood feeding Tsetse fly (Glossina morsitans morsitans) vector of Trypanosomiasis.
    Mwangi S; Attardo G; Suzuki Y; Aksoy S; Christoffels A
    BMC Genomics; 2015 Sep; 16(1):722. PubMed ID: 26394619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE.
    Li H; Hou J; Bai L; Hu C; Tong P; Kang Y; Zhao X; Shao Z
    RNA Biol; 2015; 12(5):525-37. PubMed ID: 25747261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli.
    Mendoza-Vargas A; Olvera L; Olvera M; Grande R; Vega-Alvarado L; Taboada B; Jimenez-Jacinto V; Salgado H; Juárez K; Contreras-Moreira B; Huerta AM; Collado-Vides J; Morett E
    PLoS One; 2009 Oct; 4(10):e7526. PubMed ID: 19838305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide prediction and validation of sigma70 promoters in Lactobacillus plantarum WCFS1.
    Todt TJ; Wels M; Bongers RS; Siezen RS; van Hijum SA; Kleerebezem M
    PLoS One; 2012; 7(9):e45097. PubMed ID: 23028780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation.
    Čuklina J; Hahn J; Imakaev M; Omasits U; Förstner KU; Ljubimov N; Goebel M; Pessi G; Fischer HM; Ahrens CH; Gelfand MS; Evguenieva-Hackenberg E
    BMC Genomics; 2016 Apr; 17():302. PubMed ID: 27107716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.
    Erb I; van Nimwegen E
    PLoS One; 2011; 6(9):e24279. PubMed ID: 21931670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.
    Mejía-Guerra MK; Li W; Galeano NF; Vidal M; Gray J; Doseff AI; Grotewold E
    Plant Cell; 2015 Dec; 27(12):3309-20. PubMed ID: 26628745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of core promoters in the Drosophila genome.
    Ohler U; Liao GC; Niemann H; Rubin GM
    Genome Biol; 2002; 3(12):RESEARCH0087. PubMed ID: 12537576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis.
    Yokomori R; Shimai K; Nishitsuji K; Suzuki Y; Kusakabe TG; Nakai K
    Genome Res; 2016 Jan; 26(1):140-50. PubMed ID: 26668163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis.
    Yamamoto YY; Yoshitsugu T; Sakurai T; Seki M; Shinozaki K; Obokata J
    Plant J; 2009 Oct; 60(2):350-62. PubMed ID: 19563441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SwissRegulon, a database of genome-wide annotations of regulatory sites: recent updates.
    Pachkov M; Balwierz PJ; Arnold P; Ozonov E; van Nimwegen E
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D214-20. PubMed ID: 23180783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome.
    Rach EA; Yuan HY; Majoros WH; Tomancak P; Ohler U
    Genome Biol; 2009; 10(7):R73. PubMed ID: 19589141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide TSS Identification in Maize.
    Mejia-Guerra MK; Li W; Doseff AI; Grotewold E
    Methods Mol Biol; 2018; 1830():239-256. PubMed ID: 30043374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transcription factor affinity-based code for mammalian transcription initiation.
    Megraw M; Pereira F; Jensen ST; Ohler U; Hatzigeorgiou AG
    Genome Res; 2009 Apr; 19(4):644-56. PubMed ID: 19141595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High sensitivity TSS prediction: estimates of locations where TSS cannot occur.
    Schaefer U; Kodzius R; Kai C; Kawai J; Carninci P; Hayashizaki Y; Bajic VB
    PLoS One; 2010 Nov; 5(11):e13934. PubMed ID: 21085627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation.
    Bernard V; Brunaud V; Lecharny A
    BMC Genomics; 2010 Mar; 11():166. PubMed ID: 20222994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.