These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35163663)

  • 1. A Transfer-Learning-Based Deep Convolutional Neural Network for Predicting Leukemia-Related Phosphorylation Sites from Protein Primary Sequences.
    He J; Wu Y; Pu X; Li M; Guo Y
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mini-review: Recent advances in post-translational modification site prediction based on deep learning.
    Meng L; Chan WS; Huang L; Liu L; Chen X; Zhang W; Wang F; Cheng K; Sun H; Wong KC
    Comput Struct Biotechnol J; 2022; 20():3522-3532. PubMed ID: 35860402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TransPhos: A Deep-Learning Model for General Phosphorylation Site Prediction Based on Transformer-Encoder Architecture.
    Wang X; Zhang Z; Zhang C; Meng X; Shi X; Qu P
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network.
    Khalili E; Ramazi S; Ghanati F; Kouchaki S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepMPSF: A Deep Learning Network for Predicting General Protein Phosphorylation Sites Based on Multiple Protein Sequence Features.
    Xie J; Quan L; Wang X; Wu H; Jin Z; Pan D; Chen T; Wu T; Lyu Q
    J Chem Inf Model; 2023 Nov; 63(22):7258-7271. PubMed ID: 37931253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of leukemia peptides using convolutional neural network and protein compositions.
    Khawaja SA; Farooq MS; Ishaq K; Alsubaie N; Karamti H; Montero EC; Alvarado ES; Ashraf I
    BMC Cancer; 2024 Jul; 24(1):900. PubMed ID: 39060972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information.
    Yang H; Wang M; Liu X; Zhao XM; Li A
    Bioinformatics; 2021 Dec; 37(24):4668-4676. PubMed ID: 34320631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model.
    Ke J; Zhao J; Li H; Yuan L; Dong G; Wang G
    Comput Biol Med; 2024 May; 174():108330. PubMed ID: 38588617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning based approach for prediction of Chlamydomonas reinhardtii phosphorylation sites.
    Thapa N; Chaudhari M; Iannetta AA; White C; Roy K; Newman RH; Hicks LM; Kc DB
    Sci Rep; 2021 Jun; 11(1):12550. PubMed ID: 34131195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
    Lee JH; Kim DH; Jeong SN; Choi SH
    J Dent; 2018 Oct; 77():106-111. PubMed ID: 30056118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRNNTL: Convolutional Recurrent Neural Network and Transfer Learning for QSAR Modeling in Organic Drug and Material Discovery.
    Li Y; Xu Y; Yu Y
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning.
    Kakati T; Bhattacharyya DK; Kalita JK; Norden-Krichmar TM
    BMC Bioinformatics; 2022 Jan; 23(1):17. PubMed ID: 34991439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepPhos: prediction of protein phosphorylation sites with deep learning.
    Luo F; Wang M; Liu Y; Zhao XM; Li A
    Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning.
    Wang Y; Choi EJ; Choi Y; Zhang H; Jin GY; Ko SB
    Ultrasound Med Biol; 2020 May; 46(5):1119-1132. PubMed ID: 32059918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AAPred-CNN: Accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides.
    Lin C; Wang L; Shi L
    Methods; 2022 Aug; 204():442-448. PubMed ID: 35031486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.