These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 35163663)
41. A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites. Long H; Liao B; Xu X; Yang J Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30231550 [TBL] [Abstract][Full Text] [Related]
42. Evolution of Deep Convolutional Neural Networks Using Cartesian Genetic Programming. Suganuma M; Kobayashi M; Shirakawa S; Nagao T Evol Comput; 2020; 28(1):141-163. PubMed ID: 30900927 [TBL] [Abstract][Full Text] [Related]
43. An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences. Hu S; Ma R; Wang H PLoS One; 2019; 14(11):e0225317. PubMed ID: 31725778 [TBL] [Abstract][Full Text] [Related]
44. Preoperative Prediction of Pancreatic Neuroendocrine Neoplasms Grading Based on Enhanced Computed Tomography Imaging: Validation of Deep Learning with a Convolutional Neural Network. Luo Y; Chen X; Chen J; Song C; Shen J; Xiao H; Chen M; Li ZP; Huang B; Feng ST Neuroendocrinology; 2020; 110(5):338-350. PubMed ID: 31525737 [TBL] [Abstract][Full Text] [Related]
45. Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations. Winkler JK; Sies K; Fink C; Toberer F; Enk A; Deinlein T; Hofmann-Wellenhof R; Thomas L; Lallas A; Blum A; Stolz W; Abassi MS; Fuchs T; Rosenberger A; Haenssle HA Eur J Cancer; 2020 Mar; 127():21-29. PubMed ID: 31972395 [TBL] [Abstract][Full Text] [Related]
46. Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins. Jamal S; Ali W; Nagpal P; Grover A; Grover S J Transl Med; 2021 May; 19(1):218. PubMed ID: 34030700 [TBL] [Abstract][Full Text] [Related]
47. IoMT-Based Automated Detection and Classification of Leukemia Using Deep Learning. Bibi N; Sikandar M; Ud Din I; Almogren A; Ali S J Healthc Eng; 2020; 2020():6648574. PubMed ID: 33343851 [TBL] [Abstract][Full Text] [Related]
48. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method. Fang C; Moriwaki Y; Tian A; Li C; Shimizu K J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736 [TBL] [Abstract][Full Text] [Related]
49. A Deep Learning Approach for Predicting Antigenic Variation of Influenza A H3N2. Xia YL; Li W; Li Y; Ji XL; Fu YX; Liu SQ Comput Math Methods Med; 2021; 2021():9997669. PubMed ID: 34697557 [TBL] [Abstract][Full Text] [Related]
50. DeepNitro: Prediction of Protein Nitration and Nitrosylation Sites by Deep Learning. Xie Y; Luo X; Li Y; Chen L; Ma W; Huang J; Cui J; Zhao Y; Xue Y; Zuo Z; Ren J Genomics Proteomics Bioinformatics; 2018 Aug; 16(4):294-306. PubMed ID: 30268931 [TBL] [Abstract][Full Text] [Related]
51. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442 [TBL] [Abstract][Full Text] [Related]
52. A deep convolutional neural network architecture for interstitial lung disease pattern classification. Huang S; Lee F; Miao R; Si Q; Lu C; Chen Q Med Biol Eng Comput; 2020 Apr; 58(4):725-737. PubMed ID: 31965407 [TBL] [Abstract][Full Text] [Related]
53. Identification of phosphorylation site using S-padding strategy based convolutional neural network. Zeng Y; Liu D; Wang Y Health Inf Sci Syst; 2022 Dec; 10(1):29. PubMed ID: 36124094 [TBL] [Abstract][Full Text] [Related]
54. Targeted transfer learning to improve performance in small medical physics datasets. Romero M; Interian Y; Solberg T; Valdes G Med Phys; 2020 Dec; 47(12):6246-6256. PubMed ID: 33007112 [TBL] [Abstract][Full Text] [Related]
55. Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network. Kilicarslan S; Adem K; Celik M Med Hypotheses; 2020 Apr; 137():109577. PubMed ID: 31991364 [TBL] [Abstract][Full Text] [Related]
56. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056 [TBL] [Abstract][Full Text] [Related]
57. Deep neural networks for human microRNA precursor detection. Zheng X; Fu X; Wang K; Wang M BMC Bioinformatics; 2020 Jan; 21(1):17. PubMed ID: 31931701 [TBL] [Abstract][Full Text] [Related]
58. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning. Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214 [TBL] [Abstract][Full Text] [Related]
59. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks. Alawad M; Gao S; Qiu JX; Yoon HJ; Blair Christian J; Penberthy L; Mumphrey B; Wu XC; Coyle L; Tourassi G J Am Med Inform Assoc; 2020 Jan; 27(1):89-98. PubMed ID: 31710668 [TBL] [Abstract][Full Text] [Related]