These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Using Big Data Analytics to "Back Engineer" Protein Conformational Selection Mechanisms. Gupta S; Baudry J; Menon V Molecules; 2022 Apr; 27(8):. PubMed ID: 35458706 [TBL] [Abstract][Full Text] [Related]
3. Ensemble Docking in Drug Discovery: How Many Protein Configurations from Molecular Dynamics Simulations are Needed To Reproduce Known Ligand Binding? Evangelista Falcon W; Ellingson SR; Smith JC; Baudry J J Phys Chem B; 2019 Jun; 123(25):5189-5195. PubMed ID: 30695645 [TBL] [Abstract][Full Text] [Related]
4. Big Data analytics for improved prediction of ligand binding and conformational selection. Gupta S; Baudry J; Menon V Front Mol Biosci; 2022; 9():953984. PubMed ID: 36710883 [TBL] [Abstract][Full Text] [Related]
5. Bridging molecular docking to membrane molecular dynamics to investigate GPCR-ligand recognition: the human A₂A adenosine receptor as a key study. Sabbadin D; Ciancetta A; Moro S J Chem Inf Model; 2014 Jan; 54(1):169-83. PubMed ID: 24359090 [TBL] [Abstract][Full Text] [Related]
7. Machine learning and ligand binding predictions: A review of data, methods, and obstacles. Ellingson SR; Davis B; Allen J Biochim Biophys Acta Gen Subj; 2020 Jun; 1864(6):129545. PubMed ID: 32057823 [TBL] [Abstract][Full Text] [Related]
8. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing. Redkar S; Mondal S; Joseph A; Hareesha KS Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548 [TBL] [Abstract][Full Text] [Related]
9. Discovery of novel dual adenosine A1/A2A receptor antagonists using deep learning, pharmacophore modeling and molecular docking. Wang M; Hou S; Wei Y; Li D; Lin J PLoS Comput Biol; 2021 Mar; 17(3):e1008821. PubMed ID: 33739970 [TBL] [Abstract][Full Text] [Related]
10. Machine learning approaches and their applications in drug discovery and design. Priya S; Tripathi G; Singh DB; Jain P; Kumar A Chem Biol Drug Des; 2022 Jul; 100(1):136-153. PubMed ID: 35426249 [TBL] [Abstract][Full Text] [Related]
11. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example. Mahasenan KV; Li C J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Methods in Drug Discovery. Patel L; Shukla T; Huang X; Ussery DW; Wang S Molecules; 2020 Nov; 25(22):. PubMed ID: 33198233 [TBL] [Abstract][Full Text] [Related]
13. Substructure-based virtual screening for adenosine A2A receptor ligands. van der Horst E; van der Pijl R; Mulder-Krieger T; Bender A; Ijzerman AP ChemMedChem; 2011 Dec; 6(12):2302-11. PubMed ID: 22021213 [TBL] [Abstract][Full Text] [Related]
14. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Ye L; Van Eps N; Zimmer M; Ernst OP; Prosser RS Nature; 2016 May; 533(7602):265-8. PubMed ID: 27144352 [TBL] [Abstract][Full Text] [Related]
15. Integrating Pharmacophore into Membrane Molecular Dynamics Simulations to Improve Homology Modeling of G Protein-coupled Receptors with Ligand Selectivity: A2A Adenosine Receptor as an Example. Zeng L; Guan M; Jin H; Liu Z; Zhang L Chem Biol Drug Des; 2015 Dec; 86(6):1438-50. PubMed ID: 26072970 [TBL] [Abstract][Full Text] [Related]
18. SuperBiHelix method for predicting the pleiotropic ensemble of G-protein-coupled receptor conformations. Bray JK; Abrol R; Goddard WA; Trzaskowski B; Scott CE Proc Natl Acad Sci U S A; 2014 Jan; 111(1):E72-8. PubMed ID: 24344284 [TBL] [Abstract][Full Text] [Related]
19. Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery. Nayarisseri A; Khandelwal R; Tanwar P; Madhavi M; Sharma D; Thakur G; Speck-Planche A; Singh SK Curr Drug Targets; 2021; 22(6):631-655. PubMed ID: 33397265 [TBL] [Abstract][Full Text] [Related]
20. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction. Paulose R; Jegatheesan K; Balakrishnan GS Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]