BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 35163897)

  • 1. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases.
    Kamal RM; Abdull Razis AF; Mohd Sukri NS; Perimal EK; Ahmad H; Patrick R; Djedaini-Pilard F; Mazzon E; Rigaud S
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective Effect of Glucosinolates Hydrolytic Products in Neurodegenerative Diseases (NDDs).
    Jaafaru MS; Abd Karim NA; Enas ME; Rollin P; Mazzon E; Abdull Razis AF
    Nutrients; 2018 May; 10(5):. PubMed ID: 29738500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases.
    Giacoppo S; Galuppo M; Montaut S; Iori R; Rollin P; Bramanti P; Mazzon E
    Fitoterapia; 2015 Oct; 106():12-21. PubMed ID: 26254971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective Effect of Isothiocyanates from Cruciferous Vegetables on Breast Cancer: Epidemiological and Preclinical Perspectives.
    Ngo SNT; Williams DB
    Anticancer Agents Med Chem; 2021; 21(11):1413-1430. PubMed ID: 32972351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucosinolate-derived amine formation in Brassica oleracea vegetables.
    Andernach L; Witzel K; Hanschen FS
    Food Chem; 2023 Mar; 405(Pt B):134907. PubMed ID: 36417803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections.
    Romeo L; Iori R; Rollin P; Bramanti P; Mazzon E
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29522501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases.
    Tarozzi A; Angeloni C; Malaguti M; Morroni F; Hrelia S; Hrelia P
    Oxid Med Cell Longev; 2013; 2013():415078. PubMed ID: 23983898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural and Synthetic Isothiocyanates Possess Anticancer Potential Against Liver and Prostate Cancer
    Crowley E; Rowan NJ; Faller D; Friel AM
    Anticancer Res; 2019 Jul; 39(7):3469-3485. PubMed ID: 31262871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways.
    Sturm C; Wagner AE
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28862664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New biomarkers for monitoring the levels of isothiocyanates in humans.
    Kumar A; Sabbioni G
    Chem Res Toxicol; 2010 Apr; 23(4):756-65. PubMed ID: 20131755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables--a review.
    Stoewsand GS
    Food Chem Toxicol; 1995 Jun; 33(6):537-43. PubMed ID: 7797181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccessibility of glucosinolates, isothiocyanates and inorganic micronutrients in cruciferous vegetables through INFOGEST static in vitro digestion model.
    Martínez-Castro J; de Haro-Bailón A; Obregón-Cano S; García Magdaleno IM; Moreno Ortega A; Cámara-Martos F
    Food Res Int; 2023 Apr; 166():112598. PubMed ID: 36914324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanodelivery of natural isothiocyanates as a cancer therapeutic.
    Wang Q; Bao Y
    Free Radic Biol Med; 2021 May; 167():125-140. PubMed ID: 33711418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion.
    Oliviero T; Verkerk R; Dekker M
    Mol Nutr Food Res; 2018 Sep; 62(18):e1701069. PubMed ID: 29898282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli.
    Conaway CC; Getahun SM; Liebes LL; Pusateri DJ; Topham DK; Botero-Omary M; Chung FL
    Nutr Cancer; 2000; 38(2):168-78. PubMed ID: 11525594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of products from the reaction of glucosinolate-derived isothiocyanates with cysteine and lysine derivatives formed in either model systems or broccoli sprouts.
    Hanschen FS; Brüggemann N; Brodehl A; Mewis I; Schreiner M; Rohn S; Kroh LW
    J Agric Food Chem; 2012 Aug; 60(31):7735-45. PubMed ID: 22794085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction and identification of isothiocyanates from broccolini seeds.
    Zhang B; Wang X; Yang Y; Zhang X
    Nat Prod Commun; 2011 Jan; 6(1):65-6. PubMed ID: 21366048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts.
    De Nicola GR; Bagatta M; Pagnotta E; Angelino D; Gennari L; Ninfali P; Rollin P; Iori R
    Food Chem; 2013 Nov; 141(1):297-303. PubMed ID: 23768361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism.
    Felker P; Bunch R; Leung AM
    Nutr Rev; 2016 Apr; 74(4):248-58. PubMed ID: 26946249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts.
    Papi A; Orlandi M; Bartolini G; Barillari J; Iori R; Paolini M; Ferroni F; Grazia Fumo M; Pedulli GF; Valgimigli L
    J Agric Food Chem; 2008 Feb; 56(3):875-83. PubMed ID: 18189352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.