These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 35164099)
1. Effects of Co Doping on the Growth and Photocatalytic Properties of ZnO Particles. Tang L; Jia Y; Zhu Z; Hua Y; Wu J; Zou Z; Zhou Y Molecules; 2022 Jan; 27(3):. PubMed ID: 35164099 [TBL] [Abstract][Full Text] [Related]
2. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Kuriakose S; Satpati B; Mohapatra S Phys Chem Chem Phys; 2015 Oct; 17(38):25172-81. PubMed ID: 26352866 [TBL] [Abstract][Full Text] [Related]
3. Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Kuriakose S; Satpati B; Mohapatra S Phys Chem Chem Phys; 2014 Jul; 16(25):12741-9. PubMed ID: 24830365 [TBL] [Abstract][Full Text] [Related]
4. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method. Poongodi G; Anandan P; Kumar RM; Jayavel R Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():237-43. PubMed ID: 25897717 [TBL] [Abstract][Full Text] [Related]
5. Lanthanum and zirconium co-doped ZnO nanocomposites: synthesis, characterization and study of photocatalytic activity. Moafi HF; Zanjanchi MA; Shojaie AF J Nanosci Nanotechnol; 2014 Sep; 14(9):7139-50. PubMed ID: 25924382 [TBL] [Abstract][Full Text] [Related]
6. N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue. Sun L; Shao Q; Zhang Y; Jiang H; Ge S; Lou S; Lin J; Zhang J; Wu S; Dong M; Guo Z J Colloid Interface Sci; 2020 Apr; 565():142-155. PubMed ID: 31951986 [TBL] [Abstract][Full Text] [Related]
7. Preparation and Photocatalytic Properties of ZnO Deposited TiO₂ Nanotube Arrays by Anodization. Shang F; Chen S; Liang J; Liu C J Nanosci Nanotechnol; 2019 Apr; 19(4):2070-2077. PubMed ID: 30486949 [TBL] [Abstract][Full Text] [Related]
8. Photocatalytic, dye degradation, and bactericidal behavior of Cu-doped ZnO nanorods and their molecular docking analysis. Rashid M; Ikram M; Haider A; Naz S; Haider J; Ul-Hamid A; Shahzadi A; Aqeel M Dalton Trans; 2020 Jun; 49(24):8314-8330. PubMed ID: 32515772 [TBL] [Abstract][Full Text] [Related]
9. Synergistic influence of FRET, bulk recombination centers, and charge separation in enhancing the visible-light-driven photocatalytic activity of Cu Chatterjee S; Kar AK Phys Chem Chem Phys; 2022 Jul; 24(26):16281-16299. PubMed ID: 35758416 [TBL] [Abstract][Full Text] [Related]
10. Effect of Fe/Sn doping on the photocatalytic performance of multi-shelled ZnO microspheres: experimental and theoretical investigations. Song S; Wu K; Wu H; Guo J; Zhang L Dalton Trans; 2019 Sep; 48(35):13260-13272. PubMed ID: 31418447 [TBL] [Abstract][Full Text] [Related]
11. Visible light responsive flower-like ZnO in photocatalytic antibacterial mechanism towards Enterococcus faecalis and Micrococcus luteus. Quek JA; Lam SM; Sin JC; Mohamed AR J Photochem Photobiol B; 2018 Oct; 187():66-75. PubMed ID: 30099271 [TBL] [Abstract][Full Text] [Related]
12. Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO. D N; Kondamareddy KK; Bin H; Lu D; Kumar P; Dwivedi RK; Pelenovich VO; Zhao XZ; Gao W; Fu D Sci Rep; 2018 Jul; 8(1):10691. PubMed ID: 30013042 [TBL] [Abstract][Full Text] [Related]
14. Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method. Kuriakose S; Bhardwaj N; Singh J; Satpati B; Mohapatra S Beilstein J Nanotechnol; 2013; 4():763-70. PubMed ID: 24367745 [TBL] [Abstract][Full Text] [Related]
15. Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation. Güy N; Çakar S; Özacar M J Colloid Interface Sci; 2016 Mar; 466():128-37. PubMed ID: 26720515 [TBL] [Abstract][Full Text] [Related]
16. Controllable growth of Cu-Bi co-doped ZnO nanospheres on cotton fabrics and a study on their photocatalytic performance in visible light. Cao L; Wang L; Xu L; Shen Y; Xie M; Hao H RSC Adv; 2021 Sep; 11(47):29416-29425. PubMed ID: 35479526 [TBL] [Abstract][Full Text] [Related]
17. Hydrothermal synthesis of Ag-doped ZnO/sepiolite nanostructured material for enhanced photocatalytic activity. Akkari M; Bardaoui A; Djebbi MA; Amara ABH; Chtourou R Environ Sci Pollut Res Int; 2022 Sep; 29(44):67159-67169. PubMed ID: 35522414 [TBL] [Abstract][Full Text] [Related]
18. Sunlight-driven enhanced photocatalytic activity of bandgap narrowing Sn-doped ZnO nanoparticles. Venkatesh N; Aravindan S; Ramki K; Murugadoss G; Thangamuthu R; Sakthivel P Environ Sci Pollut Res Int; 2021 Apr; 28(13):16792-16803. PubMed ID: 33398748 [TBL] [Abstract][Full Text] [Related]
19. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2. Zhao W; Ai Z; Dai J; Zhang M PLoS One; 2014; 9(8):e103671. PubMed ID: 25090093 [TBL] [Abstract][Full Text] [Related]
20. The effect of iron doping on the structural, optical, surface morphological, and temperature-dependent magnetic properties of ZnO nanoparticles. Anbuselvan D; Nilavazhagan S; Santhanam A; Chidhambaram N; Kanimozhi G; Ahamad T; Alshehri SM J Phys Condens Matter; 2021 Mar; 33(9):094001. PubMed ID: 33232954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]