BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35164146)

  • 1. Alginate Self-Crosslinking Ink for 3D Extrusion-Based Cryoprinting and Application for Epirubicin-HCl Delivery on MCF-7 Cells.
    Remaggi G; Catanzano O; Quaglia F; Elviri L
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications.
    Munoz-Perez E; Perez-Valle A; Igartua M; Santos-Vizcaino E; Hernandez RM
    Biomater Adv; 2023 Jun; 149():213414. PubMed ID: 37031611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery.
    Wang Y; Miao Y; Zhang J; Wu JP; Kirk TB; Xu J; Ma D; Xue W
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():44-51. PubMed ID: 29519442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 14-3-3ε protein-loaded 3D hydrogels favor osteogenesis.
    Aldana AA; Uhart M; Abraham GA; Bustos DM; Boccaccini AR
    J Mater Sci Mater Med; 2020 Nov; 31(11):105. PubMed ID: 33141369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels.
    Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J
    Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Cytocompatible Gelatin-Cellulose-Alginate Blend Hydrogels.
    Erkoc P; Uvak I; Nazeer MA; Batool SR; Odeh YN; Akdogan O; Kizilel S
    Macromol Biosci; 2020 Oct; 20(10):e2000106. PubMed ID: 32790232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of Laponite® incorporated oxidized alginate-gelatin (ADA-GEL) composite hydrogels for extrusion-based 3D printing.
    Cai FF; Heid S; Boccaccini AR
    J Biomed Mater Res B Appl Biomater; 2021 Aug; 109(8):1090-1104. PubMed ID: 33277973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Floating Ricobendazole Delivery Systems: A 3D Printing Method by Co-Extrusion of Sodium Alginate and Calcium Chloride.
    Falcone G; Real JP; Palma SD; Aquino RP; Del Gaudio P; Garofalo E; Russo P
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of alginate-based hydrogel bioprinting for application in tissue engineering.
    Rastogi P; Kandasubramanian B
    Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose nanocrystals as support nanomaterials for dual droplet-based freeform 3D printing.
    Yoon HS; Yang K; Kim YM; Nam K; Roh YH
    Carbohydr Polym; 2021 Nov; 272():118469. PubMed ID: 34420728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis.
    Hwang SH; Kim J; Heo C; Yoon J; Kim H; Lee SH; Park HW; Heo MS; Moon HE; Kim C; Paek SH; Jang J
    Acta Biomater; 2023 Feb; 157():137-148. PubMed ID: 36460287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of alginate hydrogels through solution extrusion and the release behavior of different drugs.
    Liu G; Zhou H; Wu H; Chen R; Guo S
    J Biomater Sci Polym Ed; 2016 Dec; 27(18):1808-1823. PubMed ID: 27647540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Extrusion Printed Urinary Specific Grafts: Mechanistic Insights into Buildability and Biophysical Properties.
    Chowdhury SR; Mondal G; Ratnayake P; Basu B
    ACS Biomater Sci Eng; 2024 Feb; 10(2):1040-1061. PubMed ID: 38294204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.