These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35164158)

  • 1. Antileishmanial Effects of Acetylene Acetogenins from Seeds of
    Brito IA; Thevenard F; Costa-Silva TA; Oliveira SS; Cunha RLOR; de Oliveira EA; Sartorelli P; Guadagnin RC; Romanelli MM; Tempone AG; Lago JHG
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antitrypanosomal Activity of Acetogenins Isolated from the Seeds of Porcelia macrocarpa Is Associated with Alterations in Both Plasma Membrane Electric Potential and Mitochondrial Membrane Potential.
    Oliveira EA; Brito IA; Lima ML; Romanelli M; Moreira-Filho JT; Neves BJ; Andrade CH; Sartorelli P; Tempone AG; Costa-Silva TA; Lago JHG
    J Nat Prod; 2019 May; 82(5):1177-1182. PubMed ID: 31046273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitrypanosomal Acetylene Fatty Acid Derivatives from the Seeds of Porcelia macrocarpa (Annonaceae).
    de Á Santos L; Cavalheiro AJ; Tempone AG; Correa DS; Alexandre TR; Quintiliano NF; Rodrigues-Oliveira AF; Oliveira-Silva D; Martins RC; Lago JH
    Molecules; 2015 May; 20(5):8168-80. PubMed ID: 25961159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylenic fatty acids from Porcelia macrocarpa (Annonaceae) against trypomastigotes of Trypanosoma cruzi: Effect of octadec-9-ynoic acid in plasma membrane electric potential.
    Londero VS; da Costa-Silva TA; Gomes KS; Ferreira DD; Mesquita JT; Tempone AG; Young MCM; Jerz G; Lago JHG
    Bioorg Chem; 2018 Aug; 78():307-311. PubMed ID: 29625270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro antileishmanial activity of acetogenins from Annonaceae.
    Raynaud-Le Grandic S; Fourneau C; Laurens A; Bories C; Hocquemiller R; Loiseau PM
    Biomed Pharmacother; 2004; 58(6-7):388-92. PubMed ID: 15271421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiprotozoal activity of extracts and isolated triterpenoids of 'carnauba' (Copernicia prunifera) wax from Brazil.
    de Almeida BC; Araújo BQ; Carvalho AA; Freitas SD; Maciel DD; Ferreira AJ; Tempone AG; Martins LF; Alexandre TR; Chaves MH; Lago JH
    Pharm Biol; 2016 Dec; 54(12):3280-3284. PubMed ID: 27569846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata.
    Bruno de Sousa C; Gangadhar KN; Morais TR; Conserva GA; Vizetto-Duarte C; Pereira H; Laurenti MD; Campino L; Levy D; Uemi M; Barreira L; Custódio L; Passero LF; Lago JH; Varela J
    Exp Parasitol; 2017 Mar; 174():1-9. PubMed ID: 28126391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leishmanicidal activity and cytotoxicity of compounds from two Annonacea species cultivated in Northeastern Brazil.
    Vila-Nova NS; Morais SM; Falcão MJ; Machado LK; Beviláqua CM; Costa IR; Brasil NV; Andrade Júnior HF
    Rev Soc Bras Med Trop; 2011 Oct; 44(5):567-71. PubMed ID: 22031071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Novel Quaternary Ammonium Salts and Their in Vitro Antileishmanial Activity and U-937 Cell Cytotoxicity.
    Duque-Benítez SM; Ríos-Vásquez LA; Ocampo-Cardona R; Cedeño DL; Jones MA; Vélez ID; Robledo SM
    Molecules; 2016 Mar; 21(4):381. PubMed ID: 27043509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro antileishmanial activity of leaf and stem extracts of seven Brazilian plant species.
    de Paula RC; da Silva SM; Faria KF; Frézard F; Moreira CPS; Foubert K; Lopes JCD; Campana PRV; Rocha MP; Silva AF; Silva CG; Pieters L; Almeida VL
    J Ethnopharmacol; 2019 Mar; 232():155-164. PubMed ID: 30580025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiazolidine derivatives: In vitro toxicity assessment against promastigote and amastigote forms of Leishmania infantum and ultrastructural study.
    Gouveia ALA; Santos FAB; Alves LC; Cruz-Filho IJ; Silva PR; Jacob ITT; Soares JCS; Santos DKDN; Souza TRCL; Oliveira JF; Lima MDCA
    Exp Parasitol; 2022; 236-237():108253. PubMed ID: 35381223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and anti-leishmanial evaluation of 1-phenyl-2,3,4,9-tetrahydro-1H-β-carboline derivatives against Leishmania infantum.
    Ashok P; Chander S; Tejería A; García-Calvo L; Balaña-Fouce R; Murugesan S
    Eur J Med Chem; 2016 Nov; 123():814-821. PubMed ID: 27541264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute Configuration and Antileishmanial Activity of (-)-Cyclocolorenone Isolated from
    Monteiro J; Passero LFD; Jesus JA; Laurenti MD; Lago JHG; Soares MG; Batista ANL; Batista JM; Sartorelli P
    Curr Top Med Chem; 2022; 22(19):1626-1633. PubMed ID: 35796444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetogenins from Annonaceae.
    Liaw CC; Liou JR; Wu TY; Chang FR; Wu YC
    Prog Chem Org Nat Prod; 2016; 101():113-230. PubMed ID: 26659109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel steroid derivatives: synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies.
    da Trindade Granato J; Dos Santos JA; Calixto SL; Prado da Silva N; da Silva Martins J; da Silva AD; Coimbra ES
    Biomed Pharmacother; 2018 Oct; 106():1082-1090. PubMed ID: 30119174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of 8-methoxy-3-(4-nitrobenzoyl)-6-propyl-2H-chromen-2-one as a promising coumarin compound for the development of a new and orally effective antileishmanial agent.
    de Figueiredo Peloso E; Merli RJ; Espuri PF; Nunes JB; Colombo FA; Sierra EJT; de Paulo DC; Dos Santos MH; Carvalho DT; Marques MJ
    Mol Biol Rep; 2020 Nov; 47(11):8465-8474. PubMed ID: 33021720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo antileishmanial activity and histopathological evaluation in Leishmania infantum infected hamsters after treatment with a furoxan derivative.
    de Almeida L; Passalacqua TG; Dutra LA; Fonseca JNVD; Nascimento RFQ; Imamura KB; de Andrade CR; Dos Santos JL; Graminha MAS
    Biomed Pharmacother; 2017 Nov; 95():536-547. PubMed ID: 28866421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents.
    Barbolla I; Hernández-Suárez L; Quevedo-Tumailli V; Nocedo-Mena D; Arrasate S; Dea-Ayuela MA; González-Díaz H; Sotomayor N; Lete E
    Eur J Med Chem; 2021 Aug; 220():113458. PubMed ID: 33901901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, synthesis, antileishmanial, and antifungal biological evaluation of novel 3,5-disubstituted isoxazole compounds based on 5-nitrofuran scaffolds.
    Trefzger OS; Barbosa NV; Scapolatempo RL; das Neves AR; Ortale MLFS; Carvalho DB; Honorato AM; Fragoso MR; Shuiguemoto CYK; Perdomo RT; Matos MFC; Chang MR; Arruda CCP; Baroni ACM
    Arch Pharm (Weinheim); 2020 Feb; 353(2):e1900241. PubMed ID: 31840866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Related Pentacyclic Triterpenes Have Immunomodulatory Activity in Chronic Experimental Visceral Leishmaniasis.
    de Jesus JA; Laurenti MD; Antonangelo L; Faria CS; Lago JHG; Passero LFD
    J Immunol Res; 2021; 2021():6671287. PubMed ID: 33681389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.