These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Marked stabilization of redox states and enhanced catalytic activity in galactose oxidase models based on transition metal S-methylisothiosemicarbazonates with -SR group in ortho position to the phenolic oxygen. Arion VB; Platzer S; Rapta P; Machata P; Breza M; Vegh D; Dunsch L; Telser J; Shova S; Mac Leod TC; Pombeiro AJ Inorg Chem; 2013 Jul; 52(13):7524-40. PubMed ID: 23758222 [TBL] [Abstract][Full Text] [Related]
27. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations. Chen X; Gao F; Yang W Sci Rep; 2016 Jul; 6():29314. PubMed ID: 27403720 [TBL] [Abstract][Full Text] [Related]
28. Properties of the indole ring in metal complexes. A comparison with the phenol ring. Shimazaki Y; Yajima T; Yamauchi O J Inorg Biochem; 2015 Jul; 148():105-15. PubMed ID: 25817198 [TBL] [Abstract][Full Text] [Related]
29. Antioxidant paradoxes of phenolic compounds: peroxyl radical scavenger and lipid antioxidant, etoposide (VP-16), inhibits sarcoplasmic reticulum Ca(2+)-ATPase via thiol oxidation by its phenoxyl radical. Ritov VB; Goldman R; Stoyanovsky DA; Menshikova EV; Kagan VE Arch Biochem Biophys; 1995 Aug; 321(1):140-52. PubMed ID: 7639514 [TBL] [Abstract][Full Text] [Related]
30. Tyrosinase-induced phenoxyl radicals of etoposide (VP-16): interaction with reductants in model systems, K562 leukemic cell and nuclear homogenates. Stoyanovsky D; Yalowich J; Gantchev T; Kagan V Free Radic Res Commun; 1993; 19(6):371-86. PubMed ID: 8168727 [TBL] [Abstract][Full Text] [Related]
31. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants. Tyurina YY; Tyurin VA; Yalowich JC; Quinn PJ; Claycamp HG; Schor NF; Pitt BR; Kagan VE Toxicol Appl Pharmacol; 1995 Apr; 131(2):277-88. PubMed ID: 7716769 [TBL] [Abstract][Full Text] [Related]
32. Intramolecular "Aryl-metal chelate ring" pi,pi-interactions as structural evidence for metalloaromaticity in (aromatic alpha,alpha'-diimine)-copper(II) chelates: molecular and crystal structure of aqua(1,10-phenanthroline)(2-benzylmalonato)copper(II) three-hydrate. Castiñeiras A; Sicilia-Zafra AG; González-Pérez JM; Choquesillo-Lazarte D; Niclós-Gutiérrez J Inorg Chem; 2002 Dec; 41(26):6956-8. PubMed ID: 12495333 [TBL] [Abstract][Full Text] [Related]
33. Substituent effects on the regium-π stacking interactions between Au Zhao Q J Mol Model; 2021 Oct; 27(11):328. PubMed ID: 34687368 [TBL] [Abstract][Full Text] [Related]
34. Formation of the Cu Suzuki T; Oshita H; Yajima T; Tani F; Abe H; Shimazaki Y Chemistry; 2019 Dec; 25(69):15805-15814. PubMed ID: 31486552 [TBL] [Abstract][Full Text] [Related]
35. Mechanistic insights from reactions between copper(II)-phenoxyl complexes and substrates with activated C-H bonds. Pratt RC; Stack TD Inorg Chem; 2005 Apr; 44(7):2367-75. PubMed ID: 15792472 [TBL] [Abstract][Full Text] [Related]
36. Control of intramolecular π-π stacking interaction in cationic iridium complexes via fluorination of pendant phenyl rings. He L; Ma D; Duan L; Wei Y; Qiao J; Zhang D; Dong G; Wang L; Qiu Y Inorg Chem; 2012 Apr; 51(8):4502-10. PubMed ID: 22462475 [TBL] [Abstract][Full Text] [Related]
37. New insights into the electronic structure and reactivity of one-electron oxidized copper(II)-(disalicylidene)diamine complexes. Asami K; Tsukidate K; Iwatsuki S; Tani F; Karasawa S; Chiang L; Storr T; Thomas F; Shimazaki Y Inorg Chem; 2012 Nov; 51(22):12450-61. PubMed ID: 23113569 [TBL] [Abstract][Full Text] [Related]
38. Cation-pi interactions with a model for the side chain of tryptophan: structures and absolute binding energies of alkali metal cation-indole complexes. Ruan C; Yang Z; Hallowita N; Rodgers MT J Phys Chem A; 2005 Dec; 109(50):11539-50. PubMed ID: 16354046 [TBL] [Abstract][Full Text] [Related]
39. Reversible Solution π-Dimerization and Long Multicenter Bonding in a Stable Phenoxyl Radical. Bonanno NM; Poddutoori PK; Sato K; Sugisaki K; Takui T; Lough AJ; Lemaire MT Chemistry; 2018 Oct; 24(56):14906-14910. PubMed ID: 30040151 [TBL] [Abstract][Full Text] [Related]
40. Model complexes for the active form of galactose oxidase. Physicochemical properties of Cu(II)- and Zn(II)-phenoxyl radical complexes. Itoh S; Taki M; Kumei H; Takayama S; Nagatomo S; Kitagawa T; Sakurada N; Arakawa R; Fukuzumi S Inorg Chem; 2000 Aug, 7; 39(16):3708-11. PubMed ID: 11196837 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]