BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35164709)

  • 1. Whole-genome resequencing of Coffea arabica L. (Rubiaceae) genotypes identify SNP and unravels distinct groups showing a strong geographical pattern.
    Mekbib Y; Tesfaye K; Dong X; Saina JK; Hu GW; Wang QF
    BMC Plant Biol; 2022 Feb; 22(1):69. PubMed ID: 35164709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content.
    Tran HTM; Ramaraj T; Furtado A; Lee LS; Henry RJ
    Plant Biotechnol J; 2018 Oct; 16(10):1756-1766. PubMed ID: 29509991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L.
    Merot-L'anthoene V; Tournebize R; Darracq O; Rattina V; Lepelley M; Bellanger L; Tranchant-Dubreuil C; Coulée M; Pégard M; Metairon S; Fournier C; Stoffelen P; Janssens SB; Kiwuka C; Musoli P; Sumirat U; Legnaté H; Kambale JL; Ferreira da Costa Neto J; Revel C; de Kochko A; Descombes P; Crouzillat D; Poncet V
    Plant Biotechnol J; 2019 Jul; 17(7):1418-1430. PubMed ID: 30582651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resequencing 93 accessions of coffee unveils independent and parallel selection during Coffea species divergence.
    Huang L; Wang X; Dong Y; Long Y; Hao C; Yan L; Shi T
    Plant Mol Biol; 2020 May; 103(1-2):51-61. PubMed ID: 32072392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNP markers identification by genome wide association study for chemical quality traits of coffee (Coffea spp.) Germplasm.
    José Luis SC; Paulino PR; Bello-Bello JJ; Esteban EP; Víctor Heber AR; Tarsicio CT; Gabino GLS; Victorino MR
    Mol Biol Rep; 2022 Jun; 49(6):4849-4859. PubMed ID: 35474051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic characterization of an elite coffee germplasm assessed by gSSR and EST-SSR markers.
    Missio RF; Caixeta ET; Zambolim EM; Pena GF; Zambolim L; Dias LA; Sakiyama NS
    Genet Mol Res; 2011 Oct; 10(4):2366-81. PubMed ID: 22002130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies.
    Hendre PS; Phanindranath R; Annapurna V; Lalremruata A; Aggarwal RK
    BMC Plant Biol; 2008 Apr; 8():51. PubMed ID: 18447947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora.
    Mondego JM; Vidal RO; Carazzolle MF; Tokuda EK; Parizzi LP; Costa GG; Pereira LF; Andrade AC; Colombo CA; Vieira LG; Pereira GA;
    BMC Plant Biol; 2011 Feb; 11():30. PubMed ID: 21303543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Differentiation of Green Beans of Arabica and Robusta Coffee Using Nanofluidic Array of Single Nucleotide Polymorphism (SNP) Markers.
    Zhang D; Vega FE; Infante F; Solano W; Johnson ES; Meinhardt LW
    J AOAC Int; 2020 Apr; 103(2):315-324. PubMed ID: 33241281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm.
    Scalabrin S; Toniutti L; Di Gaspero G; Scaglione D; Magris G; Vidotto M; Pinosio S; Cattonaro F; Magni F; Jurman I; Cerutti M; Suggi Liverani F; Navarini L; Del Terra L; Pellegrino G; Ruosi MR; Vitulo N; Valle G; Pallavicini A; Graziosi G; Klein PE; Bentley N; Murray S; Solano W; Al Hakimi A; Schilling T; Montagnon C; Morgante M; Bertrand B
    Sci Rep; 2020 Mar; 10(1):4642. PubMed ID: 32170172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical partitioning and antioxidant capacity of green coffee (Coffea arabica and Coffea canephora) of different geographical origin.
    Babova O; Occhipinti A; Maffei ME
    Phytochemistry; 2016 Mar; 123():33-9. PubMed ID: 26837609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers.
    Geleta M; Herrera I; Monzón A; Bryngelsson T
    ScientificWorldJournal; 2012; 2012():939820. PubMed ID: 22701376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome rearrangements derived from homoeologous recombination following allopolyploidy speciation in coffee.
    Lashermes P; Combes MC; Hueber Y; Severac D; Dereeper A
    Plant J; 2014 May; 78(4):674-85. PubMed ID: 24628823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic diversity of forest arabica coffee (Coffea arabica L.) in Ethiopia as revealed by random amplified polymorphic DNA (RAPD) analysis.
    Aga E; Bryngelsson T; Bekele E; Salomon B
    Hereditas; 2003; 138(1):36-46. PubMed ID: 12830983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of environmental factors on the genetic differentiation of Cucurbita ficifolia populations based on whole-genome resequencing.
    He S; Li G; Zhang J; Ding Y; Wu H; Xie J; Wu H; Yang Z
    BMC Plant Biol; 2023 Dec; 23(1):647. PubMed ID: 38102604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sources of male sterility in the Colombian Coffee Collection for the genetic improvement of Coffea arabica L.
    Suárez JCA; Flórez Ramos CP
    PLoS One; 2023; 18(9):e0291264. PubMed ID: 37682925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-genomic DNA Exchanges and Homeologous Gene Silencing Shaped the Nascent Allopolyploid Coffee Genome (Coffea arabica L.).
    Lashermes P; Hueber Y; Combes MC; Severac D; Dereeper A
    G3 (Bethesda); 2016 Sep; 6(9):2937-48. PubMed ID: 27440920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association study reveals candidate genes influencing lipids and diterpenes contents in Coffea arabica L.
    Sant'Ana GC; Pereira LFP; Pot D; Ivamoto ST; Domingues DS; Ferreira RV; Pagiatto NF; da Silva BSR; Nogueira LM; Kitzberger CSG; Scholz MBS; de Oliveira FF; Sera GH; Padilha L; Labouisse JP; Guyot R; Charmetant P; Leroy T
    Sci Rep; 2018 Jan; 8(1):465. PubMed ID: 29323254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide resequencing of KRICE_CORE reveals their potential for future breeding, as well as functional and evolutionary studies in the post-genomic era.
    Kim TS; He Q; Kim KW; Yoon MY; Ra WH; Li FP; Tong W; Yu J; Oo WH; Choi B; Heo EB; Yun BK; Kwon SJ; Kwon SW; Cho YH; Lee CY; Park BS; Park YJ
    BMC Genomics; 2016 May; 17():408. PubMed ID: 27229151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits alpha-amylases from the coffee berry borer pest.
    Barbosa AE; Albuquerque EV; Silva MC; Souza DS; Oliveira-Neto OB; Valencia A; Rocha TL; Grossi-de-Sa MF
    BMC Biotechnol; 2010 Jun; 10():44. PubMed ID: 20565807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.