These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35165364)

  • 1. Differential maturation and chaperone dependence of the paralogous protein kinases DYRK1A and DYRK1B.
    Papenfuss M; Lützow S; Wilms G; Babendreyer A; Flaßhoff M; Kunick C; Becker W
    Sci Rep; 2022 Feb; 12(1):2393. PubMed ID: 35165364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein quality control of DYRK family protein kinases by the Hsp90-Cdc37 molecular chaperone.
    Miyata Y; Nishida E
    Biochim Biophys Acta Mol Cell Res; 2021 Sep; 1868(10):119081. PubMed ID: 34147560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DYRK1B mutations associated with metabolic syndrome impair the chaperone-dependent maturation of the kinase domain.
    Abu Jhaisha S; Widowati EW; Kii I; Sonamoto R; Knapp S; Papadopoulos C; Becker W
    Sci Rep; 2017 Jul; 7(1):6420. PubMed ID: 28743892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ.
    Sonamoto R; Kii I; Koike Y; Sumida Y; Kato-Sumida T; Okuno Y; Hosoya T; Hagiwara M
    Sci Rep; 2015 Aug; 5():12728. PubMed ID: 26234946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of dual specificity kinase activity of DYRK1A.
    Walte A; Rüben K; Birner-Gruenberger R; Preisinger C; Bamberg-Lemper S; Hilz N; Bracher F; Becker W
    FEBS J; 2013 Sep; 280(18):4495-511. PubMed ID: 23809146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation.
    Bachman AB; Keramisanou D; Xu W; Beebe K; Moses MA; Vasantha Kumar MV; Gray G; Noor RE; van der Vaart A; Neckers L; Gelis I
    Nat Commun; 2018 Jan; 9(1):265. PubMed ID: 29343704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human Cdc37.Hsp90 complex studied by heteronuclear NMR spectroscopy.
    Sreeramulu S; Jonker HR; Langer T; Richter C; Lancaster CR; Schwalbe H
    J Biol Chem; 2009 Feb; 284(6):3885-96. PubMed ID: 19073599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of two residues in the DYRK homology box of the protein kinase DYRK1A.
    Widowati EW; Bamberg-Lemper S; Becker W
    BMC Res Notes; 2018 May; 11(1):297. PubMed ID: 29764512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of expression of the protein kinases DYRK1A and DYRK1B in cancer cells.
    Vorwerk VA; Wilms G; Babendreyer A; Becker W
    Sci Rep; 2024 Oct; 14(1):23926. PubMed ID: 39397076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail.
    Gould CM; Kannan N; Taylor SS; Newton AC
    J Biol Chem; 2009 Feb; 284(8):4921-35. PubMed ID: 19091746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inhibition of the kinase DYRK1A by targeting its folding process.
    Kii I; Sumida Y; Goto T; Sonamoto R; Okuno Y; Yoshida S; Kato-Sumida T; Koike Y; Abe M; Nonaka Y; Ikura T; Ito N; Shibuya H; Hosoya T; Hagiwara M
    Nat Commun; 2016 Apr; 7():11391. PubMed ID: 27102360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.
    Gaude H; Aznar N; Delay A; Bres A; Buchet-Poyau K; Caillat C; Vigouroux A; Rogon C; Woods A; Vanacker JM; Höhfeld J; Perret C; Meyer P; Billaud M; Forcet C
    Oncogene; 2012 Mar; 31(12):1582-91. PubMed ID: 21860411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine.
    Xu W; Mollapour M; Prodromou C; Wang S; Scroggins BT; Palchick Z; Beebe K; Siderius M; Lee MJ; Couvillon A; Trepel JB; Miyata Y; Matts R; Neckers L
    Mol Cell; 2012 Aug; 47(3):434-43. PubMed ID: 22727666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DCAF7/WDR68 is required for normal levels of DYRK1A and DYRK1B.
    Yousefelahiyeh M; Xu J; Alvarado E; Yu Y; Salven D; Nissen RM
    PLoS One; 2018; 13(11):e0207779. PubMed ID: 30496304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cdc37 interacts with the glycine-rich loop of Hsp90 client kinases.
    Terasawa K; Yoshimatsu K; Iemura S; Natsume T; Tanaka K; Minami Y
    Mol Cell Biol; 2006 May; 26(9):3378-89. PubMed ID: 16611982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated regulation of serum- and glucocorticoid-inducible kinase 3 by a C-terminal hydrophobic motif and Hsp90-Cdc37 chaperone complex.
    Wang Y; Xu W; Zhou D; Neckers L; Chen S
    J Biol Chem; 2014 Feb; 289(8):4815-26. PubMed ID: 24379398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte.
    Ota A; Zhang J; Ping P; Han J; Wang Y
    Circ Res; 2010 Apr; 106(8):1404-12. PubMed ID: 20299663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative splicing variants of dual specificity tyrosine phosphorylated and regulated kinase 1B exhibit distinct patterns of expression and functional properties.
    Leder S; Czajkowska H; Maenz B; De Graaf K; Barthel A; Joost HG; Becker W
    Biochem J; 2003 Jun; 372(Pt 3):881-8. PubMed ID: 12633499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites.
    Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K
    J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites.
    Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K
    J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.