These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35165405)

  • 1. Visual learning in a virtual reality environment upregulates immediate early gene expression in the mushroom bodies of honey bees.
    Geng H; Lafon G; Avarguès-Weber A; Buatois A; Massou I; Giurfa M
    Commun Biol; 2022 Feb; 5(1):130. PubMed ID: 35165405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Neural Signature of Visual Learning Under Restrictive Virtual-Reality Conditions.
    Lafon G; Geng H; Avarguès-Weber A; Buatois A; Massou I; Giurfa M
    Front Behav Neurosci; 2022; 16():846076. PubMed ID: 35250505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural activity mapping of bumble bee (Bombus ignitus) brains during foraging flight using immediate early genes.
    Iino S; Shiota Y; Nishimura M; Asada S; Ono M; Kubo T
    Sci Rep; 2020 May; 10(1):7887. PubMed ID: 32398802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight.
    Lutz CC; Robinson GE
    J Exp Biol; 2013 Jun; 216(Pt 11):2031-8. PubMed ID: 23678099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immediate early gene kakusei potentially plays a role in the daily foraging of honey bees.
    Singh AS; Takhellambam MC; Cappelletti P; Feligioni M
    PLoS One; 2020; 15(5):e0222256. PubMed ID: 32374761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?
    Sommerlandt FM; Spaethe J; Rössler W; Dyer AG
    PLoS One; 2016; 11(10):e0164386. PubMed ID: 27783640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion cues from the background influence associative color learning of honey bees in a virtual-reality scenario.
    Lafon G; Howard SR; Paffhausen BH; Avarguès-Weber A; Giurfa M
    Sci Rep; 2021 Oct; 11(1):21127. PubMed ID: 34702914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel mechanisms of visual memory formation across distinct regions of the honey bee brain.
    Avalos A; Traniello IM; Pérez Claudio E; Giray T
    J Exp Biol; 2021 Oct; 224(19):. PubMed ID: 34515309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voxel-based analysis of the immediate early gene, c-jun, in the honey bee brain after a sucrose stimulus.
    McNeill MS; Robinson GE
    Insect Mol Biol; 2015 Jun; 24(3):377-90. PubMed ID: 25773289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Associative visual learning by tethered bees in a controlled visual environment.
    Buatois A; Pichot C; Schultheiss P; Sandoz JC; Lazzari CR; Chittka L; Avarguès-Weber A; Giurfa M
    Sci Rep; 2017 Oct; 7(1):12903. PubMed ID: 29018218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Honeybees in a virtual reality environment learn unique combinations of colour and shape.
    Rusch C; Roth E; Vinauger C; Riffell JA
    J Exp Biol; 2017 Oct; 220(Pt 19):3478-3487. PubMed ID: 28751492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of an Egr ortholog as a neural immediate early gene in the European honeybee (Apis mellifera L.).
    Ugajin A; Kunieda T; Kubo T
    FEBS Lett; 2013 Oct; 587(19):3224-30. PubMed ID: 23994532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient visual learning by bumble bees in virtual-reality conditions: Size does not matter.
    Lafon G; Paoli M; Paffhausen BH; Sanchez GB; Lihoreau M; Avarguès-Weber A; Giurfa M
    Insect Sci; 2023 Dec; 30(6):1734-1748. PubMed ID: 36734172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens.
    Paulk AC; Gronenberg W
    Arthropod Struct Dev; 2008 Nov; 37(6):443-58. PubMed ID: 18635397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAergic feedback signaling into the calyces of the mushroom bodies enables olfactory reversal learning in honey bees.
    Boitard C; Devaud JM; Isabel G; Giurfa M
    Front Behav Neurosci; 2015; 9():198. PubMed ID: 26283938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-dependent plasticity in the mushroom bodies of the solitary bee Osmia lignaria (Megachilidae).
    Withers GS; Day NF; Talbot EF; Dobson HE; Wallace CS
    Dev Neurobiol; 2008 Jan; 68(1):73-82. PubMed ID: 17918235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer of Visual Learning Between a Virtual and a Real Environment in Honey Bees: The Role of Active Vision.
    Buatois A; Flumian C; Schultheiss P; Avarguès-Weber A; Giurfa M
    Front Behav Neurosci; 2018; 12():139. PubMed ID: 30057530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations.
    Devaud JM; Papouin T; Carcaud J; Sandoz JC; Grünewald B; Giurfa M
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):E5854-62. PubMed ID: 26460021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees.
    Withers GS; Fahrbach SE; Robinson GE
    J Neurobiol; 1995 Jan; 26(1):130-44. PubMed ID: 7714522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different Roles for Honey Bee Mushroom Bodies and Central Complex in Visual Learning of Colored Lights in an Aversive Conditioning Assay.
    Plath JA; Entler BV; Kirkerud NH; Schlegel U; Galizia CG; Barron AB
    Front Behav Neurosci; 2017; 11():98. PubMed ID: 28611605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.