These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35165457)

  • 1. Putting the antibiotics chloramphenicol and linezolid into context.
    Crowe-McAuliffe C; Wilson DN
    Nat Struct Mol Biol; 2022 Feb; 29(2):79-81. PubMed ID: 35165457
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics.
    Tsai K; Stojković V; Lee DJ; Young ID; Szal T; Klepacki D; Vázquez-Laslop N; Mankin AS; Fraser JS; Fujimori DG
    Nat Struct Mol Biol; 2022 Feb; 29(2):162-171. PubMed ID: 35165456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Update on the Structure of Oxazolidinone Analogs and a Comparison with Linezolid in Terms of In Vitro and Intracellular Efficacy against Clinically Relevant Bacterial Species.
    Tang Q; Zhao Y; Xu B; Gong P; Wang D
    Jpn J Infect Dis; 2017 Nov; 70(6):678-681. PubMed ID: 28890512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center.
    Marks J; Kannan K; Roncase EJ; Klepacki D; Kefi A; Orelle C; Vázquez-Laslop N; Mankin AS
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12150-12155. PubMed ID: 27791002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development.
    Arenz S; Wilson DN
    Mol Cell; 2016 Jan; 61(1):3-14. PubMed ID: 26585390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo.
    Thompson J; O'Connor M; Mills JA; Dahlberg AE
    J Mol Biol; 2002 Sep; 322(2):273-9. PubMed ID: 12217690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. R chi-01, a new family of oxazolidinones that overcome ribosome-based linezolid resistance.
    Skripkin E; McConnell TS; DeVito J; Lawrence L; Ippolito JA; Duffy EM; Sutcliffe J; Franceschi F
    Antimicrob Agents Chemother; 2008 Oct; 52(10):3550-7. PubMed ID: 18663023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and evaluation of hetero- and homodimers of ribosome-targeting antibiotics: antimicrobial activity, in vitro inhibition of translation, and drug resistance.
    Berkov-Zrihen Y; Green KD; Labby KJ; Feldman M; Garneau-Tsodikova S; Fridman M
    J Med Chem; 2013 Jul; 56(13):5613-25. PubMed ID: 23786357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial agents targeting the ribosome: the issue of selectivity and toxicity - lessons to be learned.
    Böttger EC
    Cell Mol Life Sci; 2007 Apr; 64(7-8):791-5. PubMed ID: 17429579
    [No Abstract]   [Full Text] [Related]  

  • 10. Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol.
    Syroegin EA; Flemmich L; Klepacki D; Vazquez-Laslop N; Micura R; Polikanov YS
    Nat Struct Mol Biol; 2022 Feb; 29(2):152-161. PubMed ID: 35165455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chemistry of peptidyltransferase center-targeted antibiotics: enzymatic resistance and approaches to countering resistance.
    McCusker KP; Fujimori DG
    ACS Chem Biol; 2012 Jan; 7(1):64-72. PubMed ID: 22208312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Ribosomal antibiotics].
    Man'kin AS
    Mol Biol (Mosk); 2001; 35(4):597-609. PubMed ID: 11524946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis.
    Mukhtar TA; Wright GD
    Chem Rev; 2005 Feb; 105(2):529-42. PubMed ID: 15700955
    [No Abstract]   [Full Text] [Related]  

  • 14. Antibiotics that affect the ribosome.
    Lambert T
    Rev Sci Tech; 2012 Apr; 31(1):57-64. PubMed ID: 22849268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance to linezolid caused by modifications at its binding site on the ribosome.
    Long KS; Vester B
    Antimicrob Agents Chemother; 2012 Feb; 56(2):603-12. PubMed ID: 22143525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linezolid-dependent function and structure adaptation of ribosomes in a Staphylococcus epidermidis strain exhibiting linezolid dependence.
    Kokkori S; Apostolidi M; Tsakris A; Pournaras S; Stathopoulos C; Dinos G
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4651-6. PubMed ID: 24890589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex long-distance effects of mutations that confer linezolid resistance in the large ribosomal subunit.
    Fulle S; Saini JS; Homeyer N; Gohlke H
    Nucleic Acids Res; 2015 Sep; 43(16):7731-43. PubMed ID: 26202966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linezolid is a specific inhibitor of 50S ribosomal subunit formation in Staphylococcus aureus cells.
    Champney WS; Miller M
    Curr Microbiol; 2002 May; 44(5):350-6. PubMed ID: 11927986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria.
    Swaney SM; Aoki H; Ganoza MC; Shinabarger DL
    Antimicrob Agents Chemother; 1998 Dec; 42(12):3251-5. PubMed ID: 9835522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode of action of Ranbezolid against staphylococci and structural modeling studies of its interaction with ribosomes.
    Kalia V; Miglani R; Purnapatre KP; Mathur T; Singhal S; Khan S; Voleti SR; Upadhyay DJ; Saini KS; Rattan A; Raj VS
    Antimicrob Agents Chemother; 2009 Apr; 53(4):1427-33. PubMed ID: 19075051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.