BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35165458)

  • 1. Structure of human glycosylphosphatidylinositol transamidase.
    Zhang H; Su J; Li B; Gao Y; Liu M; He L; Xu H; Dong Y; Zhang XC; Zhao Y
    Nat Struct Mol Biol; 2022 Mar; 29(3):203-209. PubMed ID: 35165458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hrd1-dependent Degradation of the Unassembled PIGK Subunit of the GPI Transamidase Complex.
    Kawaguchi K; Yamamoto-Hino M; Murakami Y; Kinoshita T; Goto S
    Cell Struct Funct; 2021 Sep; 46(2):65-71. PubMed ID: 34193731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunits of the GPI transamidase complex localize to the endoplasmic reticulum and nuclear envelope in Drosophila.
    Kawaguchi K; Yamamoto-Hino M; Matsuyama N; Suzuki E; Goto S
    FEBS Lett; 2021 Apr; 595(7):960-968. PubMed ID: 33496978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in PIGU Impair the Function of the GPI Transamidase Complex, Causing Severe Intellectual Disability, Epilepsy, and Brain Anomalies.
    Knaus A; Kortüm F; Kleefstra T; Stray-Pedersen A; Đukić D; Murakami Y; Gerstner T; van Bokhoven H; Iqbal Z; Horn D; Kinoshita T; Hempel M; Krawitz PM
    Am J Hum Genet; 2019 Aug; 105(2):395-402. PubMed ID: 31353022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in GPAA1, Encoding a GPI Transamidase Complex Protein, Cause Developmental Delay, Epilepsy, Cerebellar Atrophy, and Osteopenia.
    Nguyen TTM; Murakami Y; Sheridan E; Ehresmann S; Rousseau J; St-Denis A; Chai G; Ajeawung NF; Fairbrother L; Reimschisel T; Bateman A; Berry-Kravis E; Xia F; Tardif J; Parry DA; Logan CV; Diggle C; Bennett CP; Hattingh L; Rosenfeld JA; Perry MS; Parker MJ; Le Deist F; Zaki MS; Ignatius E; Isohanni P; Lönnqvist T; Carroll CJ; Johnson CA; Gleeson JG; Kinoshita T; Campeau PM
    Am J Hum Genet; 2017 Nov; 101(5):856-865. PubMed ID: 29100095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural requirements for the recruitment of Gaa1 into a functional glycosylphosphatidylinositol transamidase complex.
    Vainauskas S; Maeda Y; Kurniawan H; Kinoshita T; Menon AK
    J Biol Chem; 2002 Aug; 277(34):30535-42. PubMed ID: 12052837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Analysis of the GPI Transamidase Complex by Screening for Amino Acid Mutations in Each Subunit.
    Liu SS; Jin F; Liu YS; Murakami Y; Sugita Y; Kato T; Gao XD; Kinoshita T; Hattori M; Fujita M
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel homozygous variant of the PIGK gene caused by paternal disomy in a patient with neurodevelopmental disorder, cerebellar atrophy, and seizures.
    Sadamitsu K; Yanagi K; Hasegawa Y; Murakami Y; Low SE; Ooshima D; Matsubara Y; Okamoto N; Kaname T; Hirata H
    J Hum Genet; 2024 Jun; ():. PubMed ID: 38902431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of GPIT-1 and GPIT-2, two auxiliary components of the Neurospora crassa GPI transamidase complex.
    Bowman SM; Piwowar A; Arnone ED; Matsumoto R; Koudelka GB; Free SJ
    Mycologia; 2009; 101(6):764-72. PubMed ID: 19927742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanolamine phosphate linked to the first mannose residue of glycosylphosphatidylinositol (GPI) lipids is a major feature of the GPI structure that is recognized by human GPI transamidase.
    Vainauskas S; Menon AK
    J Biol Chem; 2006 Dec; 281(50):38358-64. PubMed ID: 17060324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved proline in the last transmembrane segment of Gaa1 is required for glycosylphosphatidylinositol (GPI) recognition by GPI transamidase.
    Vainauskas S; Menon AK
    J Biol Chem; 2004 Feb; 279(8):6540-5. PubMed ID: 14660601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-resolution structure of the soluble domain GPAA1 (yGPAA170-247) of the glycosylphosphatidylinositol transamidase subunit GPAA1 from Saccharomyces cerevisiae.
    Saw WG; Eisenhaber B; Eisenhaber F; Grüber G
    Biosci Rep; 2013 Mar; 33(2):e00033. PubMed ID: 23458223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic identification of glycosylphosphatidylinositol anchor-dependent membrane proteins elevated in breast carcinoma.
    Zhao P; Nairn AV; Hester S; Moremen KW; O'Regan RM; Oprea G; Wells L; Pierce M; Abbott KL
    J Biol Chem; 2012 Jul; 287(30):25230-40. PubMed ID: 22654114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling the expression pattern of GPI transamidase complex subunits in human cancer.
    Nagpal JK; Dasgupta S; Jadallah S; Chae YK; Ratovitski EA; Toubaji A; Netto GJ; Eagle T; Nissan A; Sidransky D; Trink B
    Mod Pathol; 2008 Aug; 21(8):979-91. PubMed ID: 18487995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins.
    Ohishi K; Inoue N; Maeda Y; Takeda J; Riezman H; Kinoshita T
    Mol Biol Cell; 2000 May; 11(5):1523-33. PubMed ID: 10793132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide Bond Formation and N-Glycosylation Modulate Protein-Protein Interactions in GPI-Transamidase (GPIT).
    Yi L; Bozkurt G; Li Q; Lo S; Menon AK; Wu H
    Sci Rep; 2017 Apr; 8():45912. PubMed ID: 28374821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular insights into biogenesis of glycosylphosphatidylinositol anchor proteins.
    Xu Y; Jia G; Li T; Zhou Z; Luo Y; Chao Y; Bao J; Su Z; Qu Q; Li D
    Nat Commun; 2022 May; 13(1):2617. PubMed ID: 35551457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient glycosylphosphatidylinositol (GPI) modification of membrane proteins requires a C-terminal anchoring signal of marginal hydrophobicity.
    Galian C; Björkholm P; Bulleid N; von Heijne G
    J Biol Chem; 2012 May; 287(20):16399-409. PubMed ID: 22431723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfide bridge.
    Ohishi K; Nagamune K; Maeda Y; Kinoshita T
    J Biol Chem; 2003 Apr; 278(16):13959-67. PubMed ID: 12582175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic screens of SEL1L-HRD1 ER-associated degradation substrates reveal its role in glycosylphosphatidylinositol-anchored protein biogenesis.
    Wei X; Lu Y; Lin LL; Zhang C; Chen X; Wang S; Wu SA; Li ZJ; Quan Y; Sun S; Qi L
    Nat Commun; 2024 Jan; 15(1):659. PubMed ID: 38253565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.