BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35166025)

  • 1. The ins and outs of the flavin mononucleotide cofactor of respiratory complex I.
    Curtabbi A; Enríquez JA
    IUBMB Life; 2022 Jul; 74(7):629-644. PubMed ID: 35166025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen.
    Birrell JA; Yakovlev G; Hirst J
    Biochemistry; 2009 Dec; 48(50):12005-13. PubMed ID: 19899808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent signals associated with respiratory Complex I revealed conformational changes in the catalytic site.
    Verkhovskaya M; Belevich N
    FEMS Microbiol Lett; 2019 Jun; 366(12):. PubMed ID: 31291453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible FMN dissociation from Escherichia coli respiratory complex I.
    Holt PJ; Efremov RG; Nakamaru-Ogiso E; Sazanov LA
    Biochim Biophys Acta; 2016 Nov; 1857(11):1777-1785. PubMed ID: 27555334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury.
    Stepanova A; Sosunov S; Niatsetskaya Z; Konrad C; Starkov AA; Manfredi G; Wittig I; Ten V; Galkin A
    Antioxid Redox Signal; 2019 Sep; 31(9):608-622. PubMed ID: 31037949
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor.
    Filisetti L; Fontecave M; Niviere V
    J Biol Chem; 2003 Jan; 278(1):296-303. PubMed ID: 12417584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I.
    Birrell JA; King MS; Hirst J
    FEBS Lett; 2011 Jul; 585(14):2318-22. PubMed ID: 21664911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of NADH binding, hydride transfer, and NAD(+) dissociation during NADH oxidation by mitochondrial complex I using modified nicotinamide nucleotides.
    Birrell JA; Hirst J
    Biochemistry; 2013 Jun; 52(23):4048-55. PubMed ID: 23683271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FMN site-independent energy-linked reverse electron transfer in mitochondrial respiratory complex I.
    Gladyshev GV; Grivennikova VG; Vinogradov AD
    FEBS Lett; 2018 Jul; 592(13):2213-2219. PubMed ID: 29851085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Electron Transfer Pathway of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae.
    Juárez O; Morgan JE; Barquera B
    J Biol Chem; 2009 Mar; 284(13):8963-72. PubMed ID: 19155212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of the Catalytic Sequence of Dihydroorotate Dehydrogenase B from
    Smith CO; Moran GR
    Biochemistry; 2024 May; 63(10):1347-1358. PubMed ID: 38691339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The flavoprotein subcomplex of complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria: insights into the mechanisms of NADH oxidation and NAD+ reduction from protein film voltammetry.
    Barker CD; Reda T; Hirst J
    Biochemistry; 2007 Mar; 46(11):3454-64. PubMed ID: 17323923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lys-D48 is required for charge stabilization, rapid flavin reduction, and internal electron transfer in the catalytic cycle of dihydroorotate dehydrogenase B of Lactococcus lactis.
    Combe JP; Basran J; Hothi P; Leys D; Rigby SE; Munro AW; Scrutton NS
    J Biol Chem; 2006 Jun; 281(26):17977-88. PubMed ID: 16624811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible dissociation of flavin mononucleotide from the mammalian membrane-bound NADH: ubiquinone oxidoreductase (complex I).
    Gostimskaya IS; Grivennikova VG; Cecchini G; Vinogradov AD
    FEBS Lett; 2007 Dec; 581(30):5803-6. PubMed ID: 18037377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution.
    Haines DC; Sevrioukova IF; Peterson JA
    Biochemistry; 2000 Aug; 39(31):9419-29. PubMed ID: 10924137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I.
    Tang CK; Jeffers CE; Nichols JC; Tu SC
    Arch Biochem Biophys; 2001 Aug; 392(1):110-6. PubMed ID: 11469801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
    King MS; Sharpley MS; Hirst J
    Biochemistry; 2009 Mar; 48(9):2053-62. PubMed ID: 19220002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
    Kussmaul L; Hirst J
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7607-12. PubMed ID: 16682634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron tunneling rates in respiratory complex I are tuned for efficient energy conversion.
    de Vries S; Dörner K; Strampraad MJ; Friedrich T
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2844-8. PubMed ID: 25600069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.