These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography. Singh M; Li J; Han Z; Vantipalli S; Liu CH; Wu C; Raghunathan R; Aglyamov SR; Twa MD; Larin KV Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT112-20. PubMed ID: 27409461 [TBL] [Abstract][Full Text] [Related]
3. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography. Vantipalli S; Li J; Singh M; Aglyamov SR; Larin KV; Twa MD Optom Vis Sci; 2018 Apr; 95(4):299-308. PubMed ID: 29561496 [TBL] [Abstract][Full Text] [Related]
4. Optical coherence elastography by ambient pressure modulation for high-resolution strain mapping applied to patterned cross-linking. Kling S J R Soc Interface; 2020 Jan; 17(162):20190786. PubMed ID: 31964268 [TBL] [Abstract][Full Text] [Related]
5. Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study. Nguyen TM; Aubry JF; Touboul D; Fink M; Gennisson JL; Bercoff J; Tanter M Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5948-54. PubMed ID: 22871840 [TBL] [Abstract][Full Text] [Related]
6. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model. Han Z; Li J; Singh M; Wu C; Liu CH; Raghunathan R; Aglyamov SR; Vantipalli S; Twa MD; Larin KV J Mech Behav Biomed Mater; 2017 Feb; 66():87-94. PubMed ID: 27838594 [TBL] [Abstract][Full Text] [Related]
7. Biological and biomechanical responses to traditional epithelium-off and transepithelial riboflavin-UVA CXL techniques in rabbits. Armstrong BK; Lin MP; Ford MR; Santhiago MR; Singh V; Grossman GH; Agrawal V; Sinha RA; Butler RS; Dupps WJ; Wilson SE J Refract Surg; 2013 May; 29(5):332-41. PubMed ID: 23659231 [TBL] [Abstract][Full Text] [Related]
9. Depth-resolved Corneal Biomechanical Changes Measured Via Optical Coherence Elastography Following Corneal Crosslinking. Ferguson TJ; Singuri S; Jalaj S; Ford MR; De Stefano VS; Seven I; Dupps WJ Transl Vis Sci Technol; 2021 Apr; 10(5):7. PubMed ID: 34313710 [TBL] [Abstract][Full Text] [Related]
10. Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking. Singh M; Li J; Vantipalli S; Han Z; Larin KV; Twa MD J Biomed Opt; 2017 Sep; 22(9):91504. PubMed ID: 28055060 [TBL] [Abstract][Full Text] [Related]
11. Serial biomechanical comparison of edematous, normal, and collagen crosslinked human donor corneas using optical coherence elastography. Ford MR; Sinha Roy A; Rollins AM; Dupps WJ J Cataract Refract Surg; 2014 Jun; 40(6):1041-7. PubMed ID: 24767794 [TBL] [Abstract][Full Text] [Related]
12. BAC-EDTA transepithelial riboflavin-UVA crosslinking has greater biomechanical stiffening effect than standard epithelium-off in rabbit corneas. Torricelli AA; Ford MR; Singh V; Santhiago MR; Dupps WJ; Wilson SE Exp Eye Res; 2014 Aug; 125():114-7. PubMed ID: 24929203 [TBL] [Abstract][Full Text] [Related]
13. Supersonic shear wave elastography for the in vivo evaluation of transepithelial corneal collagen cross-linking. Touboul D; Gennisson JL; Nguyen TM; Robinet A; Roberts CJ; Tanter M; Grenier N Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1976-84. PubMed ID: 24519426 [TBL] [Abstract][Full Text] [Related]
14. Novel acoustic radiation force optical coherence elastography based on ultrasmall ultrasound transducer for biomechanics evaluation of in vivo cornea. Zhu Y; Zhao Y; Shi J; Gomez Alvarez-Arenas TE; Yang H; Cai H; Zhang D; He X; Wu X J Biophotonics; 2023 Aug; 16(8):e202300074. PubMed ID: 37101410 [TBL] [Abstract][Full Text] [Related]
15. Acoustic Micro-Tapping Optical Coherence Elastography to Quantify Corneal Collagen Cross-Linking: An Ex Vivo Human Study. Kirby MA; Pelivanov I; Regnault G; Pitre JJ; Wallace RT; O'Donnell M; Wang RK; Shen TT Ophthalmol Sci; 2023 Jun; 3(2):100257. PubMed ID: 36685713 [TBL] [Abstract][Full Text] [Related]
16. In Vivo Evaluation of Corneal Biomechanics Following Cross-Linking Surgeries Using Optical Coherence Elastography in a Rabbit Model of Keratoconus. Zhao Y; Zhu Y; Yan Y; Yang H; Liu J; Lu Y; Li Y; Huang G Transl Vis Sci Technol; 2024 Feb; 13(2):15. PubMed ID: 38376862 [TBL] [Abstract][Full Text] [Related]
17. An Algorithm to Predict the Biomechanical Stiffening Effect in Corneal Cross-linking. Kling S; Hafezi F J Refract Surg; 2017 Feb; 33(2):128-136. PubMed ID: 28192592 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical efficacy of collagen crosslinking in porcine cornea using a femtosecond laser pocket. Wollensak G; Hammer CM; Spörl E; Klenke J; Skerl K; Zhang Y; Sel S Cornea; 2014 Mar; 33(3):300-5. PubMed ID: 24457453 [TBL] [Abstract][Full Text] [Related]
19. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography. Nair A; Singh M; Aglyamov SR; Larin KV J Biomed Opt; 2020 May; 25(5):1-9. PubMed ID: 32372574 [TBL] [Abstract][Full Text] [Related]
20. Dynamic evaluation of corneal cross-linking and osmotic diffusion effects using optical coherence elastography. Frigelli M; Büchler P; Kling S Sci Rep; 2024 Jul; 14(1):16614. PubMed ID: 39025900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]