These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35166527)

  • 1. Continuous Flow Processes as an Enabling Tool for the Synthesis of Constrained Pseudopeptidic Macrocycles.
    Esteve F; Porcar R; Luis SV; Altava B; García-Verdugo E
    J Org Chem; 2022 Mar; 87(5):3519-3528. PubMed ID: 35166527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Selective Anion Template Effect in the Synthesis of Constrained Pseudopeptidic Macrocyclic Cyclophanes.
    Esteve F; Altava B; Bolte M; Burguete MI; García-Verdugo E; Luis SV
    J Org Chem; 2020 Jan; 85(2):1138-1145. PubMed ID: 31858803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular control for the modular synthesis of pseudopeptidic macrocycles through an anion-templated reaction.
    Alfonso I; Bolte M; Bru M; Burguete MI; Luis SV; Rubio J
    J Am Chem Soc; 2008 May; 130(19):6137-44. PubMed ID: 18402442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion-templated syntheses of pseudopeptidic macrocycles.
    Bru M; Alfonso I; Burguete MI; Luis SV
    Angew Chem Int Ed Engl; 2006 Sep; 45(37):6155-9. PubMed ID: 16906618
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of the amino acid-derived side chain in the preorganization of C₂-symmetric pseudopeptides: effect on S(N)2 macrocyclization reactions.
    Martí-Centelles V; Burguete MI; Cativiela C; Luis SV
    J Org Chem; 2014 Jan; 79(2):559-70. PubMed ID: 24328149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 5-iodo-1,2,3-triazole-containing macrocycles using copper flow reactor technology.
    Bogdan AR; James K
    Org Lett; 2011 Aug; 13(15):4060-3. PubMed ID: 21739952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality-matched catalyst-controlled macrocyclization reactions.
    Hwang J; Mercado BQ; Miller SJ
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34599107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structurally disfavoured pseudopeptidic macrocycles through anion templation.
    Bru M; Alfonso I; Bolte M; Burguete MI; Luis SV
    Chem Commun (Camb); 2011 Jan; 47(1):283-5. PubMed ID: 20730173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template effects in S(N)2 displacements for the preparation of pseudopeptidic macrocycles.
    Martí-Centelles V; Burguete MI; Luis SV
    Chemistry; 2012 Feb; 18(8):2409-22. PubMed ID: 22262400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion.
    Kopp F; Stratton CF; Akella LB; Tan DS
    Nat Chem Biol; 2012 Mar; 8(4):358-65. PubMed ID: 22406518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrocyclization of organo-peptide hybrids through a dual bio-orthogonal ligation: insights from structure-reactivity studies.
    Frost JR; Vitali F; Jacob NT; Brown MD; Fasan R
    Chembiochem; 2013 Jan; 14(1):147-60. PubMed ID: 23203912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Efficient Synthesis of Z-Macrocycles Using Stereoretentive, Ruthenium-Based Metathesis Catalysts.
    Ahmed TS; Grubbs RH
    Angew Chem Int Ed Engl; 2017 Sep; 56(37):11213-11216. PubMed ID: 28644909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs.
    Cai J; Sun B; Yu S; Zhang H; Zhang W
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient access to new chemical space through flow--construction of druglike macrocycles through copper-surface-catalyzed azide-alkyne cycloaddition reactions.
    Bogdan AR; James K
    Chemistry; 2010 Dec; 16(48):14506-12. PubMed ID: 21038332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Opportunities and Challenges for Macrocyclic Kinase Inhibitors.
    Amrhein JA; Knapp S; Hanke T
    J Med Chem; 2021 Jun; 64(12):7991-8009. PubMed ID: 34076436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations.
    Gradillas A; Pérez-Castells J
    Angew Chem Int Ed Engl; 2006 Sep; 45(37):6086-101. PubMed ID: 16921569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strained cyclophane macrocycles: impact of progressive ring size reduction on synthesis and structure.
    Bogdan AR; Jerome SV; Houk KN; James K
    J Am Chem Soc; 2012 Feb; 134(4):2127-38. PubMed ID: 22133103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino-acid templated assembly of sucrose-derived macrocycles.
    Lewandowski B; Jarosz S
    Org Lett; 2010 Jun; 12(11):2532-5. PubMed ID: 20441188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetric macrocycles by a Prins dimerization and macrocyclization strategy.
    Gesinski MR; Tadpetch K; Rychnovsky SD
    Org Lett; 2009 Nov; 11(22):5342-5. PubMed ID: 19873984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning chloride binding, encapsulation, and transport by peripheral substitution of pseudopeptidic tripodal small cages.
    Martí I; Rubio J; Bolte M; Burguete MI; Vicent C; Quesada R; Alfonso I; Luis SV
    Chemistry; 2012 Dec; 18(52):16728-41. PubMed ID: 23255264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.