These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 35166632)
1. GLDA and EDTA assisted phytoremediation potential of Guan H; Dong L; Zhang Y; Bai S; Yan L Int J Phytoremediation; 2022; 24(13):1395-1404. PubMed ID: 35166632 [TBL] [Abstract][Full Text] [Related]
2. [Enhanced Phytoextraction of Heavy Metals from Contaminated Soils Using Sedum alfredii Hance with Biodegradable Chelate GLDA]. Wei ZB; Chen XH; Wu QT; Tan M Huan Jing Ke Xue; 2015 May; 36(5):1864-9. PubMed ID: 26314141 [TBL] [Abstract][Full Text] [Related]
3. Co-application of indole-3-acetic acid/gibberellin and oxalic acid for phytoextraction of cadmium and lead with Sedum alfredii Hance from contaminated soil. Liang Y; Xiao X; Guo Z; Peng C; Zeng P; Wang X Chemosphere; 2021 Dec; 285():131420. PubMed ID: 34256202 [TBL] [Abstract][Full Text] [Related]
4. Cadmium uptake and transfer by Xue Z; Wu M; Hu H; Kianpoor Kalkhajeh Y Int J Phytoremediation; 2021; 23(10):1052-1060. PubMed ID: 33491471 [No Abstract] [Full Text] [Related]
5. Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils. Chen Z; Liu Q; Chen S; Zhang S; Wang M; Mujtaba Munir MA; Feng Y; He Z; Yang X Environ Pollut; 2022 Jan; 293():118510. PubMed ID: 34793909 [TBL] [Abstract][Full Text] [Related]
6. GLDA exhibits advantages in the phytoextraction of Cd and Ni in land-applied municipal sludge. Wu J; Qiu Y; Yang H; Chen J; Chen S; Li F Environ Sci Pollut Res Int; 2024 Aug; 31(39):51921-51933. PubMed ID: 39134793 [TBL] [Abstract][Full Text] [Related]
7. [Enhanced Phytoextraction of Cadmium Contaminated Soil by He YL; Yu J; Xie SQ; Li PR; Zhou K; He H Huan Jing Ke Xue; 2020 Feb; 41(2):979-985. PubMed ID: 32608760 [TBL] [Abstract][Full Text] [Related]
8. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Wang K; Liu Y; Song Z; Wang D; Qiu W Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449 [TBL] [Abstract][Full Text] [Related]
9. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
10. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Li Z; Wu L; Luo Y; Christie P Chemosphere; 2018 Mar; 194():432-440. PubMed ID: 29227891 [TBL] [Abstract][Full Text] [Related]
11. Performance of new biodegradable chelants in enhancing phytoextraction of heavy metals from a contaminated calcareous soil. Masoudi F; Shirvani M; Shariatmadari H; Sabzalian MR J Environ Health Sci Eng; 2020 Dec; 18(2):655-664. PubMed ID: 33312591 [TBL] [Abstract][Full Text] [Related]
12. Removal of cadmium, lead, and zinc from multi-metal-contaminated soil using chelate-assisted Sedum alfredii Hance. Liang Y; Zhou C; Guo Z; Huang Z; Peng C; Zeng P; Xiao X; Xian Z Environ Sci Pollut Res Int; 2019 Sep; 26(27):28319-28327. PubMed ID: 31372951 [TBL] [Abstract][Full Text] [Related]
13. Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance. Guo J; Lv X; Jia H; Hua L; Ren X; Muhammad H; Wei T; Ding Y J Environ Sci (China); 2020 Feb; 88():361-369. PubMed ID: 31862077 [TBL] [Abstract][Full Text] [Related]
14. Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. Wu QT; Deng JC; Long XX; Morel JL; Schwartz C J Environ Sci (China); 2006; 18(6):1113-8. PubMed ID: 17294951 [TBL] [Abstract][Full Text] [Related]
15. Foliar application of plant growth regulators for enhancing heavy metal phytoextraction efficiency by Sedum alfredii Hance in contaminated soils: Lab to field experiments. Chen Z; Liu Q; Zhang S; Hamid Y; Lian J; Huang X; Zou T; Lin Q; Feng Y; He Z; Yang X Sci Total Environ; 2024 Feb; 913():169788. PubMed ID: 38181951 [TBL] [Abstract][Full Text] [Related]
16. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. Zhao S; Shang X; Duo L Environ Sci Pollut Res Int; 2013 Feb; 20(2):967-75. PubMed ID: 22661279 [TBL] [Abstract][Full Text] [Related]
17. A meta-analysis about the accumulation of heavy metals uptake by Song W; Wang J; Zhai L; Ge L; Hao S; Shi L; Lian C; Chen C; Shen Z; Chen Y Int J Phytoremediation; 2022; 24(7):744-752. PubMed ID: 34493098 [No Abstract] [Full Text] [Related]
18. Implication of exogenous abscisic acid (ABA) application on phytoremediation: plants grown in co-contaminated soil. Cheng L; Pu L; Li A; Zhu X; Zhao P; Xu X; Lei N; Chen J Environ Sci Pollut Res Int; 2022 Feb; 29(6):8684-8693. PubMed ID: 34491497 [TBL] [Abstract][Full Text] [Related]
19. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Guo D; Ali A; Ren C; Du J; Li R; Lahori AH; Xiao R; Zhang Z; Zhang Z Ecotoxicol Environ Saf; 2019 Jan; 167():396-403. PubMed ID: 30366273 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of phytoextraction of Pb by compounded activation agent derived from fruit residue. Ning Y; Liu N; Song Y; Luo J; Li T Int J Phytoremediation; 2019; 21(14):1449-1456. PubMed ID: 31293168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]