These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 35167026)
1. Comparative study of offshore wind energy potential assessment using different Weibull parameters estimation methods. Patidar H; Shende V; Baredar P; Soni A Environ Sci Pollut Res Int; 2022 Jun; 29(30):46341-46356. PubMed ID: 35167026 [TBL] [Abstract][Full Text] [Related]
2. Comparison of eight methods of Weibull distribution for determining the best-fit distribution parameters with wind data measured from the met-mast. Yaniktepe B; Kara O; Aladag I; Ozturk C Environ Sci Pollut Res Int; 2023 Jan; 30(4):9576-9590. PubMed ID: 36057699 [TBL] [Abstract][Full Text] [Related]
3. Comparative evaluation of optimal Weibull parameters for wind power predictions using numerical and metaheuristic optimization methods for different Indian terrains. Patidar H; Shende V; Baredar P; Soni A Environ Sci Pollut Res Int; 2023 Mar; 30(11):30874-30891. PubMed ID: 36441321 [TBL] [Abstract][Full Text] [Related]
4. Estimation of wind characteristics at different topographical conditions using doppler remote sensing instrument-a comparative study using optimization algorithm. Shende V; Patidar H; Baredar P; Agrawal M Environ Sci Pollut Res Int; 2023 Apr; 30(16):48587-48603. PubMed ID: 36763270 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of wind energy potential and trends in Morocco. El Khchine Y; Sriti M; El Kadri Elyamani NE Heliyon; 2019 Jun; 5(6):e01830. PubMed ID: 31198870 [TBL] [Abstract][Full Text] [Related]
6. Technical analysis of wind energy potentials using a modified Weibull and Raleigh distribution model parameters approach in the Gambia. Ayua TJ; Emetere ME Heliyon; 2023 Sep; 9(9):e20315. PubMed ID: 37809563 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of wind power generation projects to reduce air pollution using multi-criteria decision-making methods in Saudi Arabia. Almutairi M; Harb K; Marey O; Almutairi K Environ Sci Pollut Res Int; 2022 Dec; 29(59):88587-88605. PubMed ID: 35836047 [TBL] [Abstract][Full Text] [Related]
8. A GIS-based multi-criteria model for offshore wind energy power plants site selection in both sides of the Aegean Sea. Tercan E; Tapkın S; Latinopoulos D; Dereli MA; Tsiropoulos A; Ak MF Environ Monit Assess; 2020 Sep; 192(10):652. PubMed ID: 32964332 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of suitability of wind speed probability distribution models: a case study from Tamil Nadu, India. Natarajan N; Vasudevan M; Rehman S Environ Sci Pollut Res Int; 2022 Dec; 29(57):85855-85868. PubMed ID: 33988843 [TBL] [Abstract][Full Text] [Related]
10. Economic Feasibility of Floating Offshore Wind Farms Considering Near Future Wind Resources: Case Study of Iberian Coast and Bay of Biscay. Castro-Santos L; deCastro M; Costoya X; Filgueira-Vizoso A; Lamas-Galdo I; Ribeiro A; Dias JM; Gómez-Gesteira M Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33806488 [TBL] [Abstract][Full Text] [Related]
11. Forecasting renewable energy for environmental resilience through computational intelligence. Khan M; Al-Ammar EA; Naeem MR; Ko W; Choi HJ; Kang HK PLoS One; 2021; 16(8):e0256381. PubMed ID: 34415924 [TBL] [Abstract][Full Text] [Related]
12. Active power control strategy for wind farms based on power prediction errors distribution considering regional data. Kader MS; Mahmudh R; Xiaoqing H; Niaz A; Shoukat MU PLoS One; 2022; 17(8):e0273257. PubMed ID: 36001548 [TBL] [Abstract][Full Text] [Related]
13. Review on Monitoring, Operation and Maintenance of Smart Offshore Wind Farms. Kou L; Li Y; Zhang F; Gong X; Hu Y; Yuan Q; Ke W Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458807 [TBL] [Abstract][Full Text] [Related]
14. Impacts of accelerating deployment of offshore windfarms on near-surface climate. Akhtar N; Geyer B; Schrum C Sci Rep; 2022 Oct; 12(1):18307. PubMed ID: 36316453 [TBL] [Abstract][Full Text] [Related]
15. Large-scale effects of offshore wind farms on seabirds of high conservation concern. Garthe S; Schwemmer H; Peschko V; Markones N; Müller S; Schwemmer P; Mercker M Sci Rep; 2023 Apr; 13(1):4779. PubMed ID: 37055415 [TBL] [Abstract][Full Text] [Related]
16. Analysis of wind characteristics and wind energy resource assessment for Tonga using eleven methods of estimating Weibull parameters. Kutty SS; Khan MGM; Ahmed MR Heliyon; 2024 May; 10(9):e30047. PubMed ID: 38707343 [TBL] [Abstract][Full Text] [Related]
17. An integrated method with adaptive decomposition and machine learning for renewable energy power generation forecasting. Li G; Yu L; Zhang Y; Sun P; Li R; Zhang Y; Li G; Wang P Environ Sci Pollut Res Int; 2023 Mar; 30(14):41937-41953. PubMed ID: 36640232 [TBL] [Abstract][Full Text] [Related]
18. The offshore wind energy potential of Morocco: Optimal locations, cost analysis, and socioenvironmental examination. Charouif Y; Lehnert MR Integr Environ Assess Manag; 2024 Jan; 20(1):201-210. PubMed ID: 37272452 [TBL] [Abstract][Full Text] [Related]
19. A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies. Castro-Santos L; Filgueira-Vizoso A Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31892261 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the present and future offshore wind power potential: a case study in a target territory of the Baltic Sea near the Latvian coast. Lizuma L; Avotniece Z; Rupainis S; Teilans A ScientificWorldJournal; 2013; 2013():126428. PubMed ID: 23983619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]