These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 35167074)
1. From Quantum Mechanics, Classical Mechanics, and Bioinformatics to Artificial Intelligence Studies in Neurodegenerative Diseases. Coskuner-Weber O; Habiboglu MG; Teplow D; Uversky VN Methods Mol Biol; 2022; 2340():139-173. PubMed ID: 35167074 [TBL] [Abstract][Full Text] [Related]
2. Transition Metal Ion Interactions with Disordered Amyloid-β Peptides in the Pathogenesis of Alzheimer's Disease: Insights from Computational Chemistry Studies. Strodel B; Coskuner-Weber O J Chem Inf Model; 2019 May; 59(5):1782-1805. PubMed ID: 30933519 [TBL] [Abstract][Full Text] [Related]
3. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases. Kreutzer AG; Nowick JS Acc Chem Res; 2018 Mar; 51(3):706-718. PubMed ID: 29508987 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the internal dynamics and conformational space of zinc-bound amyloid β peptides by replica-exchange molecular dynamics simulations. Xu L; Wang X; Wang X Eur Biophys J; 2013 Jul; 42(7):575-86. PubMed ID: 23640306 [TBL] [Abstract][Full Text] [Related]
6. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters. Matsuzaki K Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558 [TBL] [Abstract][Full Text] [Related]
7. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. Rosenman DJ; Connors CR; Chen W; Wang C; García AE J Mol Biol; 2013 Sep; 425(18):3338-59. PubMed ID: 23811057 [TBL] [Abstract][Full Text] [Related]
8. Effects of all-atom force fields on amyloid oligomerization: replica exchange molecular dynamics simulations of the Aβ(16-22) dimer and trimer. Nguyen PH; Li MS; Derreumaux P Phys Chem Chem Phys; 2011 May; 13(20):9778-88. PubMed ID: 21487594 [TBL] [Abstract][Full Text] [Related]
9. Atomic-level characterization of the ensemble of the Aβ(1-42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms. Sgourakis NG; Merced-Serrano M; Boutsidis C; Drineas P; Du Z; Wang C; Garcia AE J Mol Biol; 2011 Jan; 405(2):570-83. PubMed ID: 21056574 [TBL] [Abstract][Full Text] [Related]
10. Synergistic approaches unraveling regulation and aggregation of intrinsically disordered β-amyloids implicated in Alzheimer's disease. Kumari A; Rajput R; Shrivastava N; Somvanshi P; Grover A Int J Biochem Cell Biol; 2018 Jun; 99():19-27. PubMed ID: 29571707 [TBL] [Abstract][Full Text] [Related]
11. Elucidating the Effect of Static Electric Field on Amyloid Beta 1-42 Supramolecular Assembly. Muscat S; Stojceski F; Danani A J Mol Graph Model; 2020 May; 96():107535. PubMed ID: 31978828 [TBL] [Abstract][Full Text] [Related]
12. Polymorphic Associations and Structures of the Cross-Seeding of Aβ1-42 and hIAPP1-37 Polypeptides. Zhang M; Hu R; Chen H; Gong X; Zhou F; Zhang L; Zheng J J Chem Inf Model; 2015 Aug; 55(8):1628-39. PubMed ID: 26173078 [TBL] [Abstract][Full Text] [Related]
13. Probable Transmembrane Amyloid α-Helix Bundles Capable of Conducting Ca Ngo ST; Derreumaux P; Vu VV J Phys Chem B; 2019 Mar; 123(12):2645-2653. PubMed ID: 30831027 [TBL] [Abstract][Full Text] [Related]
14. Deciphering the AChE-binding mechanism with multifunctional tricyclic coumarin anti-Alzheimer's agents using biophysical and bioinformatics approaches and evaluation of their modulating effect on Amyloidogenic peptide assembly. Shaik JB; Kandrakonda YR; Kallubai M; Gajula NN; Dubey S; Aramati BMR; Subramanyam R; Amooru GD Int J Biol Macromol; 2021 Dec; 193(Pt B):1409-1420. PubMed ID: 34740688 [TBL] [Abstract][Full Text] [Related]
16. Non-Amyloid-β Component of Human α-Synuclein Oligomers Induces Formation of New Aβ Oligomers: Insight into the Mechanisms That Link Parkinson's and Alzheimer's Diseases. Atsmon-Raz Y; Miller Y ACS Chem Neurosci; 2016 Jan; 7(1):46-55. PubMed ID: 26479553 [TBL] [Abstract][Full Text] [Related]
17. Insights into the Interaction Mechanism of Ligands with Aβ42 Based on Molecular Dynamics Simulations and Mechanics: Implications of Role of Common Binding Site in Drug Design for Alzheimer's Disease. Kundaikar HS; Degani MS Chem Biol Drug Des; 2015 Oct; 86(4):805-12. PubMed ID: 25763767 [TBL] [Abstract][Full Text] [Related]
18. Impact of A2V Mutation and Histidine Tautomerism on Aβ42 Monomer Structures from Atomistic Simulations. Li H; Nam Y; Salimi A; Lee JY J Chem Inf Model; 2020 Jul; 60(7):3587-3592. PubMed ID: 32551634 [TBL] [Abstract][Full Text] [Related]
19. In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process. Hernández-Rodríguez M; Correa-Basurto J; Benitez-Cardoza CG; Resendiz-Albor AA; Rosales-Hernández MC Protein Sci; 2013 Oct; 22(10):1320-35. PubMed ID: 23904252 [TBL] [Abstract][Full Text] [Related]
20. Structural Conversion of Aβ17-42 Peptides from Disordered Oligomers to U-Shape Protofilaments via Multiple Kinetic Pathways. Cheon M; Hall CK; Chang I PLoS Comput Biol; 2015 May; 11(5):e1004258. PubMed ID: 25955249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]