These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35167137)

  • 1. Fast and Cysteine-Specific Modification of Peptides, Proteins and Bacteriophage Using Chlorooximes.
    Chen FJ; Zheng M; Nobile V; Gao J
    Chemistry; 2022 Apr; 28(20):e202200058. PubMed ID: 35167137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and Stable N-Terminal Cysteine Modification through Thiazolidino Boronate Mediated Acyl Transfer.
    Li K; Wang W; Gao J
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14246-14250. PubMed ID: 32437040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents.
    Ceballos J; Grinhagena E; Sangouard G; Heinis C; Waser J
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):9022-9031. PubMed ID: 33450121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminoethylation in model peptides reveals conditions for maximizing thiol specificity.
    Hopkins CE; Hernandez G; Lee JP; Tolan DR
    Arch Biochem Biophys; 2005 Nov; 443(1-2):1-10. PubMed ID: 16229814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable-Length Ester-Based Staples for α-Helical Peptides by Using A Double Thiol-ene Reaction.
    Paterson DL; Flanagan JU; Shepherd PR; Harris PWR; Brimble MA
    Chemistry; 2020 Aug; 26(47):10826-10833. PubMed ID: 32232881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling.
    Spokoyny AM; Zou Y; Ling JJ; Yu H; Lin YS; Pentelute BL
    J Am Chem Soc; 2013 Apr; 135(16):5946-9. PubMed ID: 23560559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifications of cysteine residues in the solution and membrane-associated conformations of phosphatidylinositol transfer protein have differential effects on lipid transfer activity.
    Tremblay JM; Li H; Yarbrough LR; Helmkamp GM
    Biochemistry; 2001 Aug; 40(31):9151-8. PubMed ID: 11478882
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Ahangarpour M; Kavianinia I; Hume PA; Harris PWR; Brimble MA
    J Am Chem Soc; 2022 Aug; 144(30):13652-13662. PubMed ID: 35858283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homodimeric peptides displayed by the major coat protein of filamentous phage.
    Zwick MB; Shen J; Scott JK
    J Mol Biol; 2000 Jul; 300(2):307-20. PubMed ID: 10873467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase.
    Viner RI; Williams TD; Schöneich C
    Biochemistry; 1999 Sep; 38(38):12408-15. PubMed ID: 10493809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Thiol-Ene Coupling Approach to Native Peptide Stapling and Macrocyclization.
    Wang Y; Chou DH
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10931-4. PubMed ID: 26189498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of barstar by chemical modification of the buried cysteines.
    Ramachandran S; Udgaonkar JB
    Biochemistry; 1996 Jul; 35(26):8776-85. PubMed ID: 8679642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thia-Michael addition: the route to promising opportunities for fast and cysteine-specific modification.
    Ahangarpour M; Kavianinia I; Brimble MA
    Org Biomol Chem; 2023 Apr; 21(15):3057-3072. PubMed ID: 36975212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-deficient alkynes as cleavable reagents for the modification of cysteine-containing peptides in aqueous medium.
    Shiu HY; Chan TC; Ho CM; Liu Y; Wong MK; Che CM
    Chemistry; 2009; 15(15):3839-50. PubMed ID: 19229937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Conjugation by Electrophilic Alkynylation Using 5-(Alkynyl)dibenzothiophenium Triflates.
    Laserna V; Istrate A; Kafuta K; Hakala TA; Knowles TPJ; Alcarazo M; Bernardes GJL
    Bioconjug Chem; 2021 Aug; 32(8):1570-1575. PubMed ID: 34232618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionization-reactivity relationships for cysteine thiols in polypeptides.
    Bulaj G; Kortemme T; Goldenberg DP
    Biochemistry; 1998 Jun; 37(25):8965-72. PubMed ID: 9636038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An insight into the radical thiol/yne coupling: the emergence of arylalkyne-tagged sugars for the direct photoinduced glycosylation of cysteine-containing peptides.
    Minozzi M; Monesi A; Nanni D; Spagnolo P; Marchetti N; Massi A
    J Org Chem; 2011 Jan; 76(2):450-9. PubMed ID: 21175145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Plug-and-Play Platform for the Formation of Trifunctional Cysteine Bioconjugates that also Offers Control over Thiol Cleavability.
    Bahou C; Szijj PA; Spears RJ; Wall A; Javaid F; Sattikar A; Love EA; Baker JR; Chudasama V
    Bioconjug Chem; 2021 Apr; 32(4):672-679. PubMed ID: 33710874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjugation of epitope peptides with SH group to branched chain polymeric polypeptides via Cys(Npys).
    Mezö G; Mihala N; Andreu D; Hudecz F
    Bioconjug Chem; 2000; 11(4):484-91. PubMed ID: 10898569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of cysteine-rich peptides by native chemical ligation without use of exogenous thiols.
    Tsuda S; Yoshiya T; Mochizuki M; Nishiuchi Y
    Org Lett; 2015 Apr; 17(7):1806-9. PubMed ID: 25789929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.