These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 35167165)
41. Cocaine reward and hyperactivity in the rat: sites of mu opioid receptor modulation. Soderman AR; Unterwald EM Neuroscience; 2008 Jul; 154(4):1506-16. PubMed ID: 18550291 [TBL] [Abstract][Full Text] [Related]
42. Blockade of GABA(A) receptors within the extended amygdala attenuates D(2) regulation of alcohol-motivated behaviors in the ventral tegmental area of alcohol-preferring (P) rats. Eiler WJ; June HL Neuropharmacology; 2007 Jun; 52(8):1570-9. PubMed ID: 17451754 [TBL] [Abstract][Full Text] [Related]
43. Reward and aversion in a heterogeneous midbrain dopamine system. Lammel S; Lim BK; Malenka RC Neuropharmacology; 2014 Jan; 76 Pt B(0 0):351-9. PubMed ID: 23578393 [TBL] [Abstract][Full Text] [Related]
44. Direct evidence that the brain reward system is involved in the control of scratching behaviors induced by acute and chronic itch. Setsu T; Hamada Y; Oikawa D; Mori T; Ishiuji Y; Sato D; Narita M; Miyazaki S; Furuta E; Suda Y; Sakai H; Ochiya T; Tezuka H; Iseki M; Inada E; Yamanaka A; Kuzumaki N; Narita M Biochem Biophys Res Commun; 2021 Jan; 534():624-631. PubMed ID: 33220930 [TBL] [Abstract][Full Text] [Related]
45. Depletion of nucleus accumbens dopamine leads to impaired reward and aversion processing in mice: Relevance to motivation pathologies. Bergamini G; Sigrist H; Ferger B; Singewald N; Seifritz E; Pryce CR Neuropharmacology; 2016 Oct; 109():306-319. PubMed ID: 27036890 [TBL] [Abstract][Full Text] [Related]
46. Microglial activation contributes to depressive-like behavior in dopamine D3 receptor knockout mice. Wang J; Lai S; Li G; Zhou T; Wang B; Cao F; Chen T; Zhang X; Chen Y Brain Behav Immun; 2020 Jan; 83():226-238. PubMed ID: 31626970 [TBL] [Abstract][Full Text] [Related]
47. Internet gaming disorder: deficits in functional and structural connectivity in the ventral tegmental area-Accumbens pathway. Wang R; Li M; Zhao M; Yu D; Hu Y; Wiers CE; Wang GJ; Volkow ND; Yuan K Brain Imaging Behav; 2019 Aug; 13(4):1172-1181. PubMed ID: 30054871 [TBL] [Abstract][Full Text] [Related]
48. Orexinergic input to dopaminergic neurons of the human ventral tegmental area. Hrabovszky E; Molnár CS; Borsay BÁ; Gergely P; Herczeg L; Liposits Z PLoS One; 2013; 8(12):e83029. PubMed ID: 24376626 [TBL] [Abstract][Full Text] [Related]
49. Elevated cognitive control over reward processing in recovered female patients with anorexia nervosa. Ehrlich S; Geisler D; Ritschel F; King JA; Seidel M; Boehm I; Breier M; Clas S; Weiss J; Marxen M; Smolka MN; Roessner V; Kroemer NB J Psychiatry Neurosci; 2015 Sep; 40(5):307-15. PubMed ID: 26107161 [TBL] [Abstract][Full Text] [Related]
50. Ethanol self-administration is regulated by CB1 receptors in the nucleus accumbens and ventral tegmental area in alcohol-preferring AA rats. Malinen H; Hyytiä P Alcohol Clin Exp Res; 2008 Nov; 32(11):1976-83. PubMed ID: 18782338 [TBL] [Abstract][Full Text] [Related]
51. Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) microinfusions into the nucleus accumbens shell or ventral tegmental area attenuate the reinforcing effects of nicotine in rats. D'Souza MS; Markou A Neuropharmacology; 2011 Dec; 61(8):1399-405. PubMed ID: 21896278 [TBL] [Abstract][Full Text] [Related]
52. The heterogeneity of ventral tegmental area neurons: Projection functions in a mood-related context. Walsh JJ; Han MH Neuroscience; 2014 Dec; 282():101-8. PubMed ID: 24931766 [TBL] [Abstract][Full Text] [Related]
53. Decreased functional connectivity between ventral tegmental area and nucleus accumbens in Internet gaming disorder: evidence from resting state functional magnetic resonance imaging. Zhang JT; Ma SS; Yip SW; Wang LJ; Chen C; Yan CG; Liu L; Liu B; Deng LY; Liu QX; Fang XY Behav Brain Funct; 2015 Nov; 11(1):37. PubMed ID: 26582309 [TBL] [Abstract][Full Text] [Related]
54. Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area. Olson VG; Zabetian CP; Bolanos CA; Edwards S; Barrot M; Eisch AJ; Hughes T; Self DW; Neve RL; Nestler EJ J Neurosci; 2005 Jun; 25(23):5553-62. PubMed ID: 15944383 [TBL] [Abstract][Full Text] [Related]
55. Elevated nucleus accumbens structural connectivity associated with proneness to hypomania: a reward hypersensitivity perspective. Damme KS; Young CB; Nusslock R Soc Cogn Affect Neurosci; 2017 Jun; 12(6):928-936. PubMed ID: 28338785 [TBL] [Abstract][Full Text] [Related]
57. Hippocampal cannabinoid transmission modulates dopamine neuron activity: impact on rewarding memory formation and social interaction. Loureiro M; Renard J; Zunder J; Laviolette SR Neuropsychopharmacology; 2015 May; 40(6):1436-47. PubMed ID: 25510937 [TBL] [Abstract][Full Text] [Related]
58. Do dopaminergic gene polymorphisms affect mesolimbic reward activation of music listening response? Therapeutic impact on Reward Deficiency Syndrome (RDS). Blum K; Chen TJ; Chen AL; Madigan M; Downs BW; Waite RL; Braverman ER; Kerner M; Bowirrat A; Giordano J; Henshaw H; Gold MS Med Hypotheses; 2010 Mar; 74(3):513-20. PubMed ID: 19914781 [TBL] [Abstract][Full Text] [Related]
59. Abnormal functional connectivity within the reward network: a potential neuroimaging endophenotype of bipolar disorder. Xi C; Lai J; Du Y; Ng CH; Jiang J; Wu L; Zhang P; Xu Y; Hu S J Affect Disord; 2021 Feb; 280(Pt B):49-56. PubMed ID: 33221607 [TBL] [Abstract][Full Text] [Related]
60. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: Beyond leptin and ghrelin. Berner LA; Brown TA; Lavender JM; Lopez E; Wierenga CE; Kaye WH Mol Cell Endocrinol; 2019 Nov; 497():110320. PubMed ID: 30395874 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]