These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 35167248)
41. The interaction of phospholipid liposomes with bacteria and their use in the delivery of bactericides. Jones MN; Song YH; Kaszuba M; Reboiras MD J Drug Target; 1997; 5(1):25-34. PubMed ID: 9524311 [TBL] [Abstract][Full Text] [Related]
42. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW. Shuping DSS; Eloff JN Afr J Tradit Complement Altern Med; 2017; 14(4):120-127. PubMed ID: 28638874 [TBL] [Abstract][Full Text] [Related]
43. Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. Aires A; Mota VR; Saavedra MJ; Monteiro AA; Simões M; Rosa EA; Bennett RN J Appl Microbiol; 2009 Jun; 106(6):2096-105. PubMed ID: 19291239 [TBL] [Abstract][Full Text] [Related]
44. Enhancement of A Cationic Surfactant by Capping Nanoparticles: Synthesis, Characterization and Multiple Applications. Labena A; Hegazy MA; Kamel WM; Elkelish A; Hozzein WN Molecules; 2020 Apr; 25(9):. PubMed ID: 32344868 [TBL] [Abstract][Full Text] [Related]
45. Antibacterial Activities of Surfactants in the Laundry Detergents and Isolation of the Surfactant Resistant Aquatic Bacteria. Maehara Y; Miyoshi SI Biocontrol Sci; 2017; 22(4):229-232. PubMed ID: 29279580 [TBL] [Abstract][Full Text] [Related]
46. Charge-reversal silver clusters for targeted bacterial killing. Nie X; Gao F; Wang F; Liu C; You YZ J Mater Chem B; 2021 May; 9(19):4006-4014. PubMed ID: 33908582 [TBL] [Abstract][Full Text] [Related]
47. Rational Optimization and Action Mechanism of Novel Imidazole (or Imidazolium)-Labeled 1,3,4-Oxadiazole Thioethers as Promising Antibacterial Agents against Plant Bacterial Diseases. Wang PY; Wang MW; Zeng D; Xiang M; Rao JR; Liu QQ; Liu LW; Wu ZB; Li Z; Song BA; Yang S J Agric Food Chem; 2019 Apr; 67(13):3535-3545. PubMed ID: 30835115 [TBL] [Abstract][Full Text] [Related]
48. The Antibacterial and Anti-inflammatory Activity of Chicken Cathelicidin-2 combined with Exogenous Surfactant for the Treatment of Cystic Fibrosis-Associated Pathogens. Banaschewski BJH; Baer B; Arsenault C; Jazey T; Veldhuizen EJA; Delport J; Gooyers T; Lewis JF; Haagsman HP; Veldhuizen RAW; Yamashita C Sci Rep; 2017 Nov; 7(1):15545. PubMed ID: 29138462 [TBL] [Abstract][Full Text] [Related]
49. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Badosa E; Ferre R; Planas M; Feliu L; Besalú E; Cabrefiga J; Bardají E; Montesinos E Peptides; 2007 Dec; 28(12):2276-85. PubMed ID: 17980935 [TBL] [Abstract][Full Text] [Related]
50. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security. Anderson JA; Gipmans M; Hurst S; Layton R; Nehra N; Pickett J; Shah DM; Souza TL; Tripathi L J Agric Food Chem; 2016 Jan; 64(2):383-93. PubMed ID: 26785813 [TBL] [Abstract][Full Text] [Related]
51. Uses of antimicrobials in plant agriculture. Vidaver AK Clin Infect Dis; 2002 Jun; 34 Suppl 3():S107-10. PubMed ID: 11988880 [TBL] [Abstract][Full Text] [Related]
52. [Discovery of phytopathogenic bacteria 100 years ago: transatlantic controversies and polemics]. Paulin JP; Ridé M; Prunier JP C R Acad Sci III; 2001 Oct; 324(10):905-14. PubMed ID: 11570278 [TBL] [Abstract][Full Text] [Related]
53. Hrp mutant bacteria as biocontrol agents: toward a sustainable approach in the fight against plant pathogenic bacteria. Hanemian M; Zhou B; Deslandes L; Marco Y; Trémousaygue D Plant Signal Behav; 2013 Oct; 8(10):doi: 10.4161/psb.25678. PubMed ID: 23887499 [TBL] [Abstract][Full Text] [Related]
54. Antibacterial activities of Ligaria cuneifolia and Jodina rhombifolia leaf extracts against phytopathogenic and clinical bacteria. Soberón JR; Sgariglia MA; Dip Maderuelo MR; Andina ML; Sampietro DA; Vattuone MA J Biosci Bioeng; 2014 Nov; 118(5):599-605. PubMed ID: 24894684 [TBL] [Abstract][Full Text] [Related]
56. Trojan Antibiotics: New Weapons for Fighting Against Drug Resistance. Wang X; Liu Y; Lin Y; Han Y; Huang J; Zhou J; Yan Y ACS Appl Bio Mater; 2019 Jan; 2(1):447-453. PubMed ID: 35016308 [TBL] [Abstract][Full Text] [Related]
57. Efficacy of Copper and New Bactericides for Managing Olive Knot in California. Nguyen KA; Förster H; Adaskaveg JE Plant Dis; 2018 May; 102(5):892-898. PubMed ID: 30673378 [TBL] [Abstract][Full Text] [Related]
58. Phenol-Soluble-Modulin-Inspired Amphipathic Peptides Have Bactericidal Activity against Multidrug-Resistant Bacteria. Zeng P; Xu C; Cheng Q; Liu J; Gao W; Yang X; Wong KY; Chen S; Chan KF ChemMedChem; 2019 Aug; 14(16):1547-1559. PubMed ID: 31359624 [TBL] [Abstract][Full Text] [Related]
59. Antimicrobial activity of plant-median synthesized silver nanoparticles against food and agricultural pathogens. Tareq FK; Fayzunnesa M; Kabir MS Microb Pathog; 2017 Aug; 109():228-232. PubMed ID: 28583887 [TBL] [Abstract][Full Text] [Related]
60. Threats and opportunities of plant pathogenic bacteria. Tarkowski P; Vereecke D Biotechnol Adv; 2014; 32(1):215-29. PubMed ID: 24216222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]