These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 35167265)
1. Low-Power Artificial Neural Network Perceptron Based on Monolayer MoS Migliato Marega G; Wang Z; Paliy M; Giusi G; Strangio S; Castiglione F; Callegari C; Tripathi M; Radenovic A; Iannaccone G; Kis A ACS Nano; 2022 Mar; 16(3):3684-3694. PubMed ID: 35167265 [TBL] [Abstract][Full Text] [Related]
2. Thermally Driven Multilevel Non-Volatile Memory with Monolayer MoS Mallik SK; Padhan R; Sahu MC; Roy S; Pradhan GK; Sahoo PK; Dash SP; Sahoo S ACS Appl Mater Interfaces; 2023 Aug; 15(30):36527-36538. PubMed ID: 37467425 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired and Low-Power 2D Machine Vision with Adaptive Machine Learning and Forgetting. Dodda A; Jayachandran D; Subbulakshmi Radhakrishnan S; Pannone A; Zhang Y; Trainor N; Redwing JM; Das S ACS Nano; 2022 Dec; 16(12):20010-20020. PubMed ID: 36305614 [TBL] [Abstract][Full Text] [Related]
4. Issues of nanoelectronics: a possible roadmap. Wang KL J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252 [TBL] [Abstract][Full Text] [Related]
5. Logic-in-memory based on an atomically thin semiconductor. Migliato Marega G; Zhao Y; Avsar A; Wang Z; Tripathi M; Radenovic A; Kis A Nature; 2020 Nov; 587(7832):72-77. PubMed ID: 33149289 [TBL] [Abstract][Full Text] [Related]
6. An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Ning H; Yu Z; Zhang Q; Wen H; Gao B; Mao Y; Li Y; Zhou Y; Zhou Y; Chen J; Liu L; Wang W; Li T; Li Y; Meng W; Li W; Li Y; Qiu H; Shi Y; Chai Y; Wu H; Wang X Nat Nanotechnol; 2023 May; 18(5):493-500. PubMed ID: 36941361 [TBL] [Abstract][Full Text] [Related]
7. An All-in-One Bioinspired Neural Network. Subbulakshmi Radhakrishnan S; Dodda A; Das S ACS Nano; 2022 Dec; 16(12):20100-20115. PubMed ID: 36378680 [TBL] [Abstract][Full Text] [Related]
8. Reservoir Computing with Charge-Trap Memory Based on a MoS Farronato M; Mannocci P; Melegari M; Ricci S; Compagnoni CM; Ielmini D Adv Mater; 2023 Sep; 35(37):e2205381. PubMed ID: 36222391 [TBL] [Abstract][Full Text] [Related]
9. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges. Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S Front Neurosci; 2020; 14():634. PubMed ID: 32670012 [TBL] [Abstract][Full Text] [Related]
10. Reconfigurable neuromorphic computing block through integration of flash synapse arrays and super-steep neurons. Kwon D; Woo SY; Lee KH; Hwang J; Kim H; Park SH; Shin W; Bae JH; Kim JJ; Lee JH Sci Adv; 2023 Jul; 9(29):eadg9123. PubMed ID: 37467329 [TBL] [Abstract][Full Text] [Related]
11. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing. Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623 [TBL] [Abstract][Full Text] [Related]
12. A 0.086-mm Frenkel C; Lefebvre M; Legat JD; Bol D IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):145-158. PubMed ID: 30418919 [TBL] [Abstract][Full Text] [Related]
13. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications. Miranda E; Suñé J Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164 [TBL] [Abstract][Full Text] [Related]
14. An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Wang Y; Tang H; Xie Y; Chen X; Ma S; Sun Z; Sun Q; Chen L; Zhu H; Wan J; Xu Z; Zhang DW; Zhou P; Bao W Nat Commun; 2021 Jun; 12(1):3347. PubMed ID: 34099710 [TBL] [Abstract][Full Text] [Related]
15. Digital Biologically Plausible Implementation of Binarized Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays. Hirtzlin T; Bocquet M; Penkovsky B; Klein JO; Nowak E; Vianello E; Portal JM; Querlioz D Front Neurosci; 2019; 13():1383. PubMed ID: 31998059 [TBL] [Abstract][Full Text] [Related]
16. Simulation of a Fully Digital Computing-in-Memory for Non-Volatile Memory for Artificial Intelligence Edge Applications. Hu H; Feng C; Zhou H; Dong D; Pan X; Wang X; Zhang L; Cheng S; Pang W; Liu J Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374760 [TBL] [Abstract][Full Text] [Related]
17. Mixed-Precision Deep Learning Based on Computational Memory. Nandakumar SR; Le Gallo M; Piveteau C; Joshi V; Mariani G; Boybat I; Karunaratne G; Khaddam-Aljameh R; Egger U; Petropoulos A; Antonakopoulos T; Rajendran B; Sebastian A; Eleftheriou E Front Neurosci; 2020; 14():406. PubMed ID: 32477047 [TBL] [Abstract][Full Text] [Related]
18. An artificial neural network chip based on two-dimensional semiconductor. Ma S; Wu T; Chen X; Wang Y; Tang H; Yao Y; Wang Y; Zhu Z; Deng J; Wan J; Lu Y; Sun Z; Xu Z; Riaud A; Wu C; Zhang DW; Chai Y; Zhou P; Ren J; Bao W Sci Bull (Beijing); 2022 Feb; 67(3):270-277. PubMed ID: 36546076 [TBL] [Abstract][Full Text] [Related]
19. Performance Limit of Monolayer WSe Sun X; Xu L; Zhang Y; Wang W; Liu S; Yang C; Zhang Z; Lu J ACS Appl Mater Interfaces; 2020 May; 12(18):20633-20644. PubMed ID: 32285659 [TBL] [Abstract][Full Text] [Related]
20. Artificial Synaptic Emulators Based on MoS Yi SG; Park MU; Kim SH; Lee CJ; Kwon J; Lee GH; Yoo KH ACS Appl Mater Interfaces; 2018 Sep; 10(37):31480-31487. PubMed ID: 30105909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]