These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35167301)

  • 1. Spatially Resolved Band Gap and Dielectric Function in Two-Dimensional Materials from Electron Energy Loss Spectroscopy.
    Brokkelkamp A; Ter Hoeve J; Postmes I; van Heijst SE; Maduro L; Davydov AV; Krylyuk S; Rojo J; Conesa-Boj S
    J Phys Chem A; 2022 Feb; 126(7):1255-1262. PubMed ID: 35167301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charting the low-loss region in electron energy loss spectroscopy with machine learning.
    Roest LI; van Heijst SE; Maduro L; Rojo J; Conesa-Boj S
    Ultramicroscopy; 2021 Mar; 222():113202. PubMed ID: 33453606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Calculation of Optoelectronic Properties in 2D Materials: The Polytypic WS
    Maduro L; van Heijst SE; Conesa-Boj S
    ACS Phys Chem Au; 2022 May; 2(3):191-198. PubMed ID: 35637785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of compressive strain on electronic and optical properties of Cr-doped monolayer WS
    Mu Y; Liu G; Wei R; Zhang G
    J Mol Model; 2024 Apr; 30(5):137. PubMed ID: 38634935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect to Direct Gap Crossover in Two-Dimensional InSe Revealed by Angle-Resolved Photoemission Spectroscopy.
    Hamer MJ; Zultak J; Tyurnina AV; Zólyomi V; Terry D; Barinov A; Garner A; Donoghue J; Rooney AP; Kandyba V; Giampietri A; Graham A; Teutsch N; Xia X; Koperski M; Haigh SJ; Fal'ko VI; Gorbachev RV; Wilson NR
    ACS Nano; 2019 Feb; 13(2):2136-2142. PubMed ID: 30676744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of multi-shell nanoparticles.
    Nakahigashi N; Sato Y; Terauchi M; Uehara M
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i18. PubMed ID: 25359810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Excitonic Rydberg States by Plasmon Enhanced Nonlinear Optical Spectroscopy in Monolayer WS
    Shi J; Lin Z; Zhu Z; Zhou J; Xu GQ; Xu QH
    ACS Nano; 2022 Oct; 16(10):15862-15872. PubMed ID: 36169603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band gap measurement by nano-beam STEM with small off-axis angle transmission electron energy loss spectroscopy (TEELS).
    Wang YY; Jin Q; Zhuang K; Choi JK; Nxumalo J
    Ultramicroscopy; 2021 Jan; 220():113164. PubMed ID: 33186852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-Induced Bandgap Enhancement of InSe Ultrathin Films with Self-Formed Two-Dimensional Electron Gas.
    Zhang Z; Yuan Y; Zhou W; Chen C; Yuan S; Zeng H; Fu YS; Zhang W
    ACS Nano; 2021 Jun; 15(6):10700-10709. PubMed ID: 34080842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale EELS analysis of dielectric function and bandgap properties in gaN and related materials.
    Brockt G; Lakner H
    Micron; 2000 Aug; 31(4):435-40. PubMed ID: 10741613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmons in MoS
    Moynihan E; Rost S; O'Connell E; Ramasse Q; Friedrich C; Bangert U
    J Microsc; 2020 Sep; 279(3):256-264. PubMed ID: 32400884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thickness-dependent band gap of α-In
    Lyu F; Sun Y; Yang Q; Tang B; Li M; Li Z; Sun M; Gao P; Ye LH; Chen Q
    Nanotechnology; 2020 Jul; 31(31):315711. PubMed ID: 32294630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and application of a relativistic Kramers-Kronig analysis algorithm.
    Eljarrat A; Koch CT
    Ultramicroscopy; 2019 Nov; 206():112825. PubMed ID: 31400584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring possibilities of band gap measurement with off-axis EELS in TEM.
    Korneychuk S; Partoens B; Guzzinati G; Ramaneti R; Derluyn J; Haenen K; Verbeeck J
    Ultramicroscopy; 2018 Jun; 189():76-84. PubMed ID: 29626835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS.
    Eljarrat A; López-Conesa L; Magén C; García-Lepetit N; Gačević Ž; Calleja E; Peiró F; Estradé S
    Phys Chem Chem Phys; 2016 Aug; 18(33):23264-76. PubMed ID: 27499340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe.
    Lei S; Ge L; Najmaei S; George A; Kappera R; Lou J; Chhowalla M; Yamaguchi H; Gupta G; Vajtai R; Mohite AD; Ajayan PM
    ACS Nano; 2014 Feb; 8(2):1263-72. PubMed ID: 24392873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-Resolved Photoconductivity Mapping in a Monolayer-Bilayer WSe
    Chu Z; Han A; Lei C; Lopatin S; Li P; Wannlund D; Wu D; Herrera K; Zhang X; MacDonald AH; Li X; Li LJ; Lai K
    Nano Lett; 2018 Nov; 18(11):7200-7206. PubMed ID: 30289264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optoelectronic Properties of Atomically Thin Mo
    Pelaez-Fernandez M; Lin YC; Suenaga K; Arenal R
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.