These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 35167498)
21. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model. Kim SY; Kambhampati SP; Bhutto IA; McLeod DS; Lutty GA; Kannan RM Exp Eye Res; 2021 Feb; 203():108391. PubMed ID: 33307075 [TBL] [Abstract][Full Text] [Related]
22. FGF21 Administration Suppresses Retinal and Choroidal Neovascularization in Mice. Fu Z; Gong Y; Liegl R; Wang Z; Liu CH; Meng SS; Burnim SB; Saba NJ; Fredrick TW; Morss PC; Hellstrom A; Talukdar S; Smith LE Cell Rep; 2017 Feb; 18(7):1606-1613. PubMed ID: 28199833 [TBL] [Abstract][Full Text] [Related]
23. Rb1/Rbl1/Vhl loss induces mouse subretinal angiomatous proliferation and hemangioblastoma. Wei R; Ren X; Kong H; Lv Z; Chen Y; Tang Y; Wang Y; Xiao L; Yu T; Hacibekiroglu S; Liang C; Nagy A; Bremner R; Chen D JCI Insight; 2019 Nov; 4(22):. PubMed ID: 31613797 [TBL] [Abstract][Full Text] [Related]
24. Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos. Sun Y; Lin Z; Liu CH; Gong Y; Liegl R; Fredrick TW; Meng SS; Burnim SB; Wang Z; Akula JD; Pu WT; Chen J; Smith LEH J Exp Med; 2017 Jun; 214(6):1753-1767. PubMed ID: 28465464 [TBL] [Abstract][Full Text] [Related]
25. Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model. Augustin M; Fialová S; Himmel T; Glösmann M; Lengheimer T; Harper DJ; Plasenzotti R; Pircher M; Hitzenberger CK; Baumann B PLoS One; 2016; 11(10):e0164419. PubMed ID: 27711217 [TBL] [Abstract][Full Text] [Related]
26. Loss of VLDL receptor activates retinal vascular endothelial cells and promotes angiogenesis. Jiang A; Hu W; Meng H; Gao H; Qiao X Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):844-50. PubMed ID: 18936153 [TBL] [Abstract][Full Text] [Related]
27. Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent inflammation. Sun Y; Liu CH; SanGiovanni JP; Evans LP; Tian KT; Zhang B; Stahl A; Pu WT; Kamenecka TM; Solt LA; Chen J Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10401-6. PubMed ID: 26243880 [TBL] [Abstract][Full Text] [Related]
28. Biochemical alterations in the retinas of very low-density lipoprotein receptor knockout mice: an animal model of retinal angiomatous proliferation. Li C; Huang Z; Kingsley R; Zhou X; Li F; Parke DW; Cao W Arch Ophthalmol; 2007 Jun; 125(6):795-803. PubMed ID: 17562991 [TBL] [Abstract][Full Text] [Related]
29. Current treatment options for retinal angiomatous proliferans (RAP). Gupta B; Jyothi S; Sivaprasad S Br J Ophthalmol; 2010 Jun; 94(6):672-7. PubMed ID: 19897475 [TBL] [Abstract][Full Text] [Related]
30. The Role of Hypoxia, Hypoxia-Inducible Factor (HIF), and VEGF in Retinal Angiomatous Proliferation. Barben M; Samardzija M; Grimm C Adv Exp Med Biol; 2018; 1074():177-183. PubMed ID: 29721942 [TBL] [Abstract][Full Text] [Related]
31. The peptidomimetic Vasotide targets two retinal VEGF receptors and reduces pathological angiogenesis in murine and nonhuman primate models of retinal disease. Sidman RL; Li J; Lawrence M; Hu W; Musso GF; Giordano RJ; Cardó-Vila M; Pasqualini R; Arap W Sci Transl Med; 2015 Oct; 7(309):309ra165. PubMed ID: 26468327 [TBL] [Abstract][Full Text] [Related]