These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35167578)

  • 1. Double-quantum-zero-quantum 2D coherent spectroscopy reveals quantum coherence between collective states in an atomic vapor.
    Yu S; Geng Y; Liang D; Li H; Liu X
    Opt Lett; 2022 Feb; 47(4):997-1000. PubMed ID: 35167578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical two-dimensional coherent spectroscopy of cold atoms.
    Liang D; Savio Rodriguez L; Zhou H; Zhu Y; Li H
    Opt Lett; 2022 Dec; 47(24):6452-6455. PubMed ID: 36538460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective Resonance of D States in Rubidium Atoms Probed by Optical Two-Dimensional Coherent Spectroscopy.
    Liang D; Zhu Y; Li H
    Phys Rev Lett; 2022 Mar; 128(10):103601. PubMed ID: 35333094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical two-dimensional coherent spectroscopy of many-body dipole-dipole interactions and correlations in atomic vapors.
    Liang D; Li H
    J Chem Phys; 2021 Jun; 154(21):214301. PubMed ID: 34240988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long range dipole-dipole interaction in low-density atomic vapors probed by double-quantum two-dimensional coherent spectroscopy.
    Yu S; Titze M; Zhu Y; Liu X; Li H
    Opt Express; 2019 Sep; 27(20):28891-28901. PubMed ID: 31684633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-Comb Based Double-Quantum Two-Dimensional Spectrum Identifies Collective Hyperfine Resonances in Atomic Vapor Induced by Dipole-Dipole Interactions.
    Lomsadze B; Cundiff ST
    Phys Rev Lett; 2018 Jun; 120(23):233401. PubMed ID: 29932700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional electronic double-quantum coherence spectroscopy.
    Kim J; Mukamel S; Scholes GD
    Acc Chem Res; 2009 Sep; 42(9):1375-84. PubMed ID: 19552412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherence Spectroscopy in the Condensed Phase: Insights into Molecular Structure, Environment, and Interactions.
    Dean JC; Scholes GD
    Acc Chem Res; 2017 Nov; 50(11):2746-2755. PubMed ID: 29043773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.
    Gao F; Cundiff ST; Li H
    Opt Lett; 2016 Jul; 41(13):2954-7. PubMed ID: 27367074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed frequency-/time-domain coherent multidimensional spectroscopy: research tool or potential analytical method?
    Pakoulev AV; Rickard MA; Kornau KM; Mathew NA; Yurs LA; Block SB; Wright JC
    Acc Chem Res; 2009 Sep; 42(9):1310-21. PubMed ID: 19445479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of electron-electron interactions and correlations using two-dimensional electronic double-quantum coherence spectroscopy.
    Kim J; Huxter VM; Curutchet C; Scholes GD
    J Phys Chem A; 2009 Nov; 113(44):12122-33. PubMed ID: 19817401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor.
    Dai X; Richter M; Li H; Bristow AD; Falvo C; Mukamel S; Cundiff ST
    Phys Rev Lett; 2012 May; 108(19):193201. PubMed ID: 23003037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects.
    Nardin G; Moody G; Singh R; Autry TM; Li H; Morier-Genoud F; Cundiff ST
    Phys Rev Lett; 2014 Jan; 112(4):046402. PubMed ID: 24580472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully and partially coherent pathways in multiply enhanced odd-order wave-mixing spectroscopy.
    Mathew NA; Yurs LA; Block SB; Pakoulev AV; Kornau KM; Sibert EL; Wright JC
    J Phys Chem A; 2010 Jan; 114(2):817-32. PubMed ID: 19950915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional single- and multiple-quantum correlation spectroscopy in zero-field nuclear magnetic resonance.
    Sjolander TF; Blanchard JW; Budker D; Pines A
    J Magn Reson; 2020 Sep; 318():106781. PubMed ID: 32759044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing many-particle correlations in semiconductor quantum wells using double-quantum-coherence signals.
    Yang L; Mukamel S
    Proc SPIE Int Soc Opt Eng; 2010; 7600():76001G1-76001G9. PubMed ID: 21785670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed frequency/time domain optical analogues of heteronuclear multidimensional NMR.
    Pakoulev AV; Rickard MA; Meyer KA; Kornau K; Mathew NA; Thompson DE; Wright JC
    J Phys Chem A; 2006 Mar; 110(10):3352-5. PubMed ID: 16526612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast phase cycling in non-collinear optical two-dimensional coherent spectroscopy.
    Munoz MF; Medina A; Autry TM; Moody G; Siemens ME; Bristow AD; Cundiff ST; Li H
    Opt Lett; 2020 Oct; 45(20):5852-5855. PubMed ID: 33057301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.
    Spencer AP; Li H; Cundiff ST; Jonas DM
    J Phys Chem A; 2015 Apr; 119(17):3936-60. PubMed ID: 25880720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing interband coulomb interactions in semiconductor nanostructures with 2D double-quantum coherence spectroscopy.
    Velizhanin KA; Piryatinski A
    J Phys Chem B; 2011 May; 115(18):5372-82. PubMed ID: 21391697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.