BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35167652)

  • 1. Müller Glial Expression of REDD1 Is Required for Retinal Neurodegeneration and Visual Dysfunction in Diabetic Mice.
    Miller WP; Toro AL; Sunilkumar S; Stevens SA; VanCleave AM; Williamson DL; Barber AJ; Dennis MD
    Diabetes; 2022 May; 71(5):1051-1062. PubMed ID: 35167652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation.
    Miller WP; Sunilkumar S; Giordano JF; Toro AL; Barber AJ; Dennis MD
    J Biol Chem; 2020 May; 295(21):7350-7361. PubMed ID: 32295843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress response protein REDD1 promotes diabetes-induced retinal inflammation by sustaining canonical NF-κB signaling.
    Sunilkumar S; Toro AL; McCurry CM; VanCleave AM; Stevens SA; Miller WP; Kimball SR; Dennis MD
    J Biol Chem; 2022 Dec; 298(12):102638. PubMed ID: 36309088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NLRP3 Inflammasome Priming in the Retina of Diabetic Mice Requires REDD1-Dependent Activation of GSK3β.
    McCurry CM; Sunilkumar S; Subrahmanian SM; Yerlikaya EI; Toro AL; VanCleave AM; Stevens SA; Barber AJ; Sundstrom JM; Dennis MD
    Invest Ophthalmol Vis Sci; 2024 Mar; 65(3):34. PubMed ID: 38546584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. REDD1-dependent GSK3β dephosphorylation promotes NF-κB activation and macrophage infiltration in the retina of diabetic mice.
    Sunilkumar S; VanCleave AM; McCurry CM; Toro AL; Stevens SA; Kimball SR; Dennis MD
    J Biol Chem; 2023 Aug; 299(8):104991. PubMed ID: 37392853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of the Akt/mTORC1 Repressor REDD1 Prevents Visual Dysfunction in a Rodent Model of Type 1 Diabetes.
    Miller WP; Yang C; Mihailescu ML; Moore JA; Dai W; Barber AJ; Dennis MD
    Diabetes; 2018 Jan; 67(1):110-119. PubMed ID: 29074598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulated in development and DNA damage 1 is necessary for hyperglycemia-induced vascular endothelial growth factor expression in the retina of diabetic rodents.
    Dennis MD; Kimball SR; Fort PE; Jefferson LS
    J Biol Chem; 2015 Feb; 290(6):3865-74. PubMed ID: 25548280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice.
    Miller WP; Toro AL; Barber AJ; Dennis MD
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):2369-2379. PubMed ID: 31141608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Disulfide Redox Switch in REDD1 Promotes Oxidative Stress Under Hyperglycemic Conditions.
    Miller WP; Sha CM; Sunilkumar S; Toro AL; VanCleave AM; Kimball SR; Dokholyan NV; Dennis MD
    Diabetes; 2022 Dec; 71(12):2764-2776. PubMed ID: 36170669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of X-box binding protein 1 in Müller cells augments retinal inflammation in a mouse model of diabetes.
    Yang J; Chen C; McLaughlin T; Wang Y; Le YZ; Wang JJ; Zhang SX
    Diabetologia; 2019 Mar; 62(3):531-543. PubMed ID: 30612139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal gliosis and phenotypic diversity of intermediate filament induction and remodeling upon acoustic blast overpressure (ABO) exposure to the rat eye.
    Skelton LA; Ramachandra Rao S; Allen RS; Motz CT; Pardue MT; Fliesler SJ
    Exp Eye Res; 2023 Sep; 234():109585. PubMed ID: 37481225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different aspects of gliosis in retinal Muller glia can be induced by CNTF, insulin, and FGF2 in the absence of damage.
    Fischer AJ; Omar G; Eubanks J; McGuire CR; Dierks BD; Reh TA
    Mol Vis; 2004 Dec; 10():973-86. PubMed ID: 15623987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Müller cell and vascular injury in the retina.
    Tan SM; Deliyanti D; Figgett WA; Talia DM; de Haan JB; Wilkinson-Berka JL
    Exp Eye Res; 2015 Jul; 136():1-8. PubMed ID: 25912997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REDD1 Ablation Attenuates the Development of Renal Complications in Diabetic Mice.
    Sunilkumar S; Yerlikaya EI; Toro AL; Miller WP; Chen H; Hu K; Kimball SR; Dennis MD
    Diabetes; 2022 Nov; 71(11):2412-2425. PubMed ID: 35984399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroprotection by rat Müller glia against high glucose-induced neurodegeneration through a mechanism involving ERK1/2 activation.
    Matteucci A; Gaddini L; Villa M; Varano M; Parravano M; Monteleone V; Cavallo F; Leo L; Mallozzi C; Malchiodi-Albedi F; Pricci F
    Exp Eye Res; 2014 Aug; 125():20-9. PubMed ID: 24877742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury.
    Nomura-Komoike K; Saitoh F; Fujieda H
    Sci Rep; 2020 Jan; 10(1):1488. PubMed ID: 32001733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDGF Receptor Alpha Signaling Is Key for Müller Cell Homeostasis Functions.
    Díaz-Lezama N; Wolf A; Koch S; Pfaller AM; Biber J; Guillonneau X; Langmann T; Grosche A
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33503976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GMFB/AKT/TGF-β3 in Müller cells mediated early retinal degeneration in a streptozotocin-induced rat diabetes model.
    Zhu T; Li Y; Zhu L; Xu J; Feng Z; Chen H; Shi S; Liu C; Ou Q; Gao F; Zhang J; Jin C; Xu J; Li J; Zhang J; Bi Y; Xu GT; Wang J; Tian H; Lu L
    Glia; 2024 Mar; 72(3):504-528. PubMed ID: 37904673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis.
    Liu C; Li CP; Wang JJ; Shan K; Liu X; Yan B
    Biochem Biophys Res Commun; 2016 Oct; 479(2):198-203. PubMed ID: 27616193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetes enhances translation of
    Dierschke SK; Toro AL; Miller WP; Sunilkumar S; Dennis MD
    J Biol Chem; 2020 Jul; 295(31):10831-10841. PubMed ID: 32475820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.