These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35167900)

  • 1. Tools for computational design and high-throughput screening of therapeutic enzymes.
    Vasina M; Velecký J; Planas-Iglesias J; Marques SM; Skarupova J; Damborsky J; Bednar D; Mazurenko S; Prokop Z
    Adv Drug Deliv Rev; 2022 Apr; 183():114143. PubMed ID: 35167900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.
    Jacques P; Béchet M; Bigan M; Caly D; Chataigné G; Coutte F; Flahaut C; Heuson E; Leclère V; Lecouturier D; Phalip V; Ravallec R; Dhulster P; Froidevaux R
    Bioprocess Biosyst Eng; 2017 Feb; 40(2):161-180. PubMed ID: 27738757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering.
    Vanella R; Kovacevic G; Doffini V; Fernández de Santaella J; Nash MA
    Chem Commun (Camb); 2022 Feb; 58(15):2455-2467. PubMed ID: 35107442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning-assisted enzyme engineering.
    Siedhoff NE; Schwaneberg U; Davari MD
    Methods Enzymol; 2020; 643():281-315. PubMed ID: 32896285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology.
    Madhavan A; Arun KB; Binod P; Sirohi R; Tarafdar A; Reshmy R; Kumar Awasthi M; Sindhu R
    Bioresour Technol; 2021 Apr; 325():124617. PubMed ID: 33450638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of enzyme diversity: High-throughput techniques for protein production and microscale biochemical characterization.
    Vasina M; Vanacek P; Damborsky J; Prokop Z
    Methods Enzymol; 2020; 643():51-85. PubMed ID: 32896287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning.
    Vasina M; Kovar D; Damborsky J; Ding Y; Yang T; deMello A; Mazurenko S; Stavrakis S; Prokop Z
    Biotechnol Adv; 2023 Sep; 66():108171. PubMed ID: 37150331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives.
    Wójcik M; Telzerow A; Quax WJ; Boersma YL
    Int J Mol Sci; 2015 Oct; 16(10):24918-45. PubMed ID: 26492240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution.
    Ye L; Yang C; Yu H
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):559-567. PubMed ID: 29181567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet Microfluidics-Enabled High-Throughput Screening for Protein Engineering.
    Weng L; Spoonamore JE
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Throughput Screening of Esterases, Lipases and Phospholipases in Mutant and Metagenomic Libraries: A Review.
    Peña-García C; Martínez-Martínez M; Reyes-Duarte D; Ferrer M
    Comb Chem High Throughput Screen; 2016; 19(8):605-615. PubMed ID: 26552433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in droplet microfluidics for enzyme and cell factory engineering.
    Yang J; Tu R; Yuan H; Wang Q; Zhu L
    Crit Rev Biotechnol; 2021 Nov; 41(7):1023-1045. PubMed ID: 33730939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytically active nanomaterials: a promising candidate for artificial enzymes.
    Lin Y; Ren J; Qu X
    Acc Chem Res; 2014 Apr; 47(4):1097-105. PubMed ID: 24437921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed Evolution of Protein Catalysts.
    Zeymer C; Hilvert D
    Annu Rev Biochem; 2018 Jun; 87():131-157. PubMed ID: 29494241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes.
    Ufarté L; Bozonnet S; Laville E; Cecchini DA; Pizzut-Serin S; Jacquiod S; Demanèche S; Simonet P; Franqueville L; Veronese GP
    Methods Mol Biol; 2016; 1399():257-71. PubMed ID: 26791508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in biomolecular engineering.
    Ryu DD; Nam DH
    Biotechnol Prog; 2000; 16(1):2-16. PubMed ID: 10662483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying Knowledge of Enzyme Biochemistry to the Prediction of Functional Sites for Aiding Drug Discovery.
    Pai PP; Mondal S
    Curr Top Med Chem; 2017; 17(21):2401-2421. PubMed ID: 28359251
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.