BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35168037)

  • 1. Microdosimetry of an accelerator based thermal neutron field for Boron Neutron Capture Therapy.
    Selva A; Bellan L; Bianchi A; Giustiniani G; Colautti P; Fagotti E; Pisent A; Conte V
    Appl Radiat Isot; 2022 Apr; 182():110144. PubMed ID: 35168037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of biological weighting functions to estimate the microdosimetric RBE in BNCT.
    Selva A; Bianchi A; Bellan L; Fagotti E; Pisent A; Conte V
    Radiat Prot Dosimetry; 2023 Oct; 199(15-16):1963-1967. PubMed ID: 37819342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.
    Blue TE; Yanch JC
    J Neurooncol; 2003; 62(1-2):19-31. PubMed ID: 12749700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdosimetric quantities of an accelerator-based neutron source used for boron neutron capture therapy measured using a gas-filled proportional counter.
    Hu N; Tanaka H; Takata T; Okazaki K; Uchida R; Sakurai Y
    J Radiat Res; 2020 Mar; 61(2):214-220. PubMed ID: 32030430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative biological effectiveness for epithermal neutron beam contaminated with fast neutrons in the linear accelerator-based boron neutron capture therapy system coupled to a solid-state lithium target.
    Nakamura S; Imamichi S; Shimada K; Takemori M; Kanai Y; Iijima K; Chiba T; Nakayama H; Nakaichi T; Mikasa S; Urago Y; Kashihara T; Takahashi K; Nishio T; Okamoto H; Itami J; Ishiai M; Suzuki M; Igaki H; Masutani M
    J Radiat Res; 2023 Jul; 64(4):661-667. PubMed ID: 37295954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
    Nguyen TT; Kajimoto T; Tanaka K; Nguyen CC; Endo S
    Med Phys; 2016 Nov; 43(11):6049. PubMed ID: 27806584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT.
    Wang CK; Blue TE; Blue JW
    Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary photon fields produced in accelerator-based sources for neutron generation.
    Agosteo S; Cesana A; Garlati L; Pola A; Terrani M
    Radiat Prot Dosimetry; 2005; 115(1-4):363-8. PubMed ID: 16381747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV.
    Yu W; Yue G; Han X; Chen J; Tian B
    Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdosimetric measurements in the thermal neutron irradiation facility of LENA reactor.
    Colautti P; Moro D; Chiriotti S; Conte V; Evangelista L; Altieri S; Bortolussi S; Protti N; Postuma I
    Appl Radiat Isot; 2014 Jun; 88():147-52. PubMed ID: 24508176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Model for Estimating Dose-Rate Effects on Cell-Killing of Human Melanoma after Boron Neutron Capture Therapy.
    Matsuya Y; Fukunaga H; Omura M; Date H
    Cells; 2020 Apr; 9(5):. PubMed ID: 32365916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdosimetry for boron neutron capture therapy.
    Wuu CS; Amols HI; Kliauga P; Reinstein LE; Saraf S
    Radiat Res; 1992 Jun; 130(3):355-9. PubMed ID: 1594762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of miniature tissue-equivalent proportional counters for neutron radiotherapy applications.
    Burmeister J; Kota C; Maughan RL; Waker AJ
    Phys Med Biol; 2002 May; 47(10):1633-45. PubMed ID: 12069083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of SOI microdosimeter in fast neutron beams: experiment and Monte Carlo simulations.
    Vohradsky J; Tran LT; Guatelli S; Chartier L; Vandevoorde C; de Kock EA; Nieto-Camero J; Bolst D; Peracchi S; Höglund C; Rosenfeld AB
    Phys Med; 2021 Oct; 90():176-187. PubMed ID: 34688192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdosimetric spectra of the THOR neutron beam for boron neutron capture therapy.
    Hsu FY; Tung CJ; Watt DE
    Radiat Prot Dosimetry; 2003; 104(2):121-6. PubMed ID: 12918789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A practical target system for accelerator-based BNCT which may effectively double the dose rate.
    Randers-Pehrson G; Brenner DJ
    Med Phys; 1998 Jun; 25(6):894-6. PubMed ID: 9650178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility study of optical imaging of the boron-dose distribution by a liquid scintillator in a clinical boron neutron capture therapy field.
    Maeda H; Nohtomi A; Hu N; Kakino R; Akita K; Ono K
    Med Phys; 2024 Jan; 51(1):509-521. PubMed ID: 37672219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.