These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35168211)
1. Fine-grained calibrated double-attention convolutional network for left ventricular segmentation. Lu C; Guo Z; Yuan J; Xia K; Yu H Phys Med Biol; 2022 Mar; 67(5):. PubMed ID: 35168211 [No Abstract] [Full Text] [Related]
2. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related]
3. SAUN: Stack attention U-Net for left ventricle segmentation from cardiac cine magnetic resonance imaging. Sun X; Garg P; Plein S; van der Geest RJ Med Phys; 2021 Apr; 48(4):1750-1763. PubMed ID: 33544895 [TBL] [Abstract][Full Text] [Related]
4. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture. Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635 [TBL] [Abstract][Full Text] [Related]
5. Left ventricle automatic segmentation in cardiac MRI using a combined CNN and U-net approach. Wu B; Fang Y; Lai X Comput Med Imaging Graph; 2020 Jun; 82():101719. PubMed ID: 32325284 [TBL] [Abstract][Full Text] [Related]
6. The Study of Echocardiography of Left Ventricle Segmentation Combining Transformer and Convolutional Neural Networks. Shi S; Alimu P; Mahemut P Int Heart J; 2024; 65(5):889-897. PubMed ID: 39343594 [TBL] [Abstract][Full Text] [Related]
7. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images. Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627 [TBL] [Abstract][Full Text] [Related]
8. Automated left ventricular segmentation from cardiac magnetic resonance images via adversarial learning with multi-stage pose estimation network and co-discriminator. Wu H; Lu X; Lei B; Wen Z Med Image Anal; 2021 Feb; 68():101891. PubMed ID: 33260108 [TBL] [Abstract][Full Text] [Related]
9. Automatic left ventricle segmentation in short-axis MRI using deep convolutional neural networks and central-line guided level set approach. Xie L; Song Y; Chen Q Comput Biol Med; 2020 Jul; 122():103877. PubMed ID: 32658742 [TBL] [Abstract][Full Text] [Related]
10. Boundary-aware context neural network for medical image segmentation. Wang R; Chen S; Ji C; Fan J; Li Y Med Image Anal; 2022 May; 78():102395. PubMed ID: 35231851 [TBL] [Abstract][Full Text] [Related]
11. Dynamic pixel-wise weighting-based fully convolutional neural networks for left ventricle segmentation in short-axis MRI. Wang Z; Xie L; Qi J Magn Reson Imaging; 2020 Feb; 66():131-140. PubMed ID: 31465788 [TBL] [Abstract][Full Text] [Related]
12. A multiple-channel and atrous convolution network for ultrasound image segmentation. Zhang L; Zhang J; Li Z; Song Y Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105 [TBL] [Abstract][Full Text] [Related]
13. A Multi-channel Deep Learning Approach for Segmentation of the Left Ventricular Endocardium from Cardiac Images. Yang X; Su Y; Tjio G; Yang F; Ding J; Kumar S; Leng S; Zhao X; Tan RS; Zhong L Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4016-4019. PubMed ID: 31946752 [TBL] [Abstract][Full Text] [Related]
14. CardSegNet: An adaptive hybrid CNN-vision transformer model for heart region segmentation in cardiac MRI. Aghapanah H; Rasti R; Kermani S; Tabesh F; Banaem HY; Aliakbar HP; Sanei H; Segars WP Comput Med Imaging Graph; 2024 Jul; 115():102382. PubMed ID: 38640619 [TBL] [Abstract][Full Text] [Related]
15. Deep Convolutional Neural Networks for left ventricle segmentation. Molaei S; Shiri M; Horan K; Kahrobaei D; Nallamothu B; Najarian K Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():668-671. PubMed ID: 29059961 [TBL] [Abstract][Full Text] [Related]
16. Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network. He Y; Qin W; Wu Y; Zhang M; Yang Y; Liu X; Zheng H; Liang D; Hu Z J Xray Sci Technol; 2020; 28(3):541-553. PubMed ID: 32176675 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous extraction of endocardial and epicardial contours of the left ventricle by distance regularized level sets. Feng C; Zhang S; Zhao D; Li C Med Phys; 2016 Jun; 43(6):2741-2755. PubMed ID: 27277021 [TBL] [Abstract][Full Text] [Related]
18. Cardiac Segmentation Method Based on Domain Knowledge. Wang Y; Chen W; Tang T; Xie W; Jiang Y; Zhang H; Zhou X; Yuan K Ultrason Imaging; 2022 May; 44(2-3):105-117. PubMed ID: 35574925 [TBL] [Abstract][Full Text] [Related]
19. Cardiovascular magnetic resonance images with susceptibility artifacts: artificial intelligence with spatial-attention for ventricular volumes and mass assessment. Penso M; Babbaro M; Moccia S; Guglielmo M; Carerj ML; Giacari CM; Chiesa M; Maragna R; Rabbat MG; Barison A; Martini N; Pepi M; Caiani EG; Pontone G J Cardiovasc Magn Reson; 2022 Nov; 24(1):62. PubMed ID: 36437452 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis of U-Net and TLMDB GAN for the cardiovascular segmentation of the ventricles in the heart. Zhang Y; Feng J; Guo X; Ren Y Comput Methods Programs Biomed; 2022 Mar; 215():106614. PubMed ID: 35066315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]