These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35168226)

  • 1. Thermodefect voltage in graphene nanoribbon junctions.
    Aydin A; Sisman A; Fransson J; Black-Schaffer AM; Dutta P
    J Phys Condens Matter; 2022 Mar; 34(19):. PubMed ID: 35168226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons.
    Kuo DMT; Chang YC
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric properties of nanostructured systems based on narrow armchair graphene nanoribbons.
    Hozana C; Latgé A
    J Phys Condens Matter; 2019 Mar; 31(12):125303. PubMed ID: 30654349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bottom-Up On-Surface Synthesis of Two-Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties.
    Kojima T; Nakae T; Xu Z; Saravanan C; Watanabe K; Nakamura Y; Sakaguchi H
    Chem Asian J; 2019 Dec; 14(23):4400-4407. PubMed ID: 31724299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y; Jayasekera T; Calzolari A; Kim KW; Nardelli MB
    J Phys Condens Matter; 2010 Sep; 22(37):372202. PubMed ID: 21403189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA; Martins GB
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the Conductance of Electronically Decoupled Graphene Nanoribbons.
    Jacobse PH; Mangnus MJJ; Zevenhuizen SJM; Swart I
    ACS Nano; 2018 Jul; 12(7):7048-7056. PubMed ID: 29939719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.
    Liu QB; Wu DD; Fu HH
    Phys Chem Chem Phys; 2017 Oct; 19(39):27132-27139. PubMed ID: 28967009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the enhancement of the thermoelectric properties of bilayer graphyne nanoribbons.
    C M Rodrigues D; L Lage L; Venezuela P; Latgé A
    Phys Chem Chem Phys; 2022 Apr; 24(16):9324-9332. PubMed ID: 35383347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric properties of doped graphene nanoribbons: density functional theory calculations and electrical transport.
    Rahmati E; Bafekry A; Faraji M; Gogva D; Nguyen CV; Ghergherehchi M
    RSC Adv; 2022 Feb; 12(10):6174-6180. PubMed ID: 35424535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Thermoelectric Performance of As-Grown Suspended Graphene Nanoribbons.
    Li QY; Feng T; Okita W; Komori Y; Suzuki H; Kato T; Kaneko T; Ikuta T; Ruan X; Takahashi K
    ACS Nano; 2019 Aug; 13(8):9182-9189. PubMed ID: 31411858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Armchair graphene nanoribbons with giant spin thermoelectric efficiency.
    Shirdel-Havar M; Farghadan R
    Phys Chem Chem Phys; 2018 Jun; 20(24):16853-16860. PubMed ID: 29892735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials.
    Liu YY; Zeng YJ; Jia PZ; Cao XH; Jiang X; Chen KQ
    J Phys Condens Matter; 2018 Jul; 30(27):275701. PubMed ID: 29799436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral Interfaces between Monolayer MoS
    Haastrup MJ; Mammen MHR; Rodríguez-Fernández J; Lauritsen JV
    ACS Nano; 2021 Apr; 15(4):6699-6708. PubMed ID: 33750101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spin-dependent properties of silicon carbide/graphene nanoribbons junctions with vacancy defects.
    Khanlar G; Vishkayi SI; Soleimani HR
    Sci Rep; 2021 Dec; 11(1):23879. PubMed ID: 34903793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectricity in atom-sized junctions at room temperatures.
    Tsutsui M; Morikawa T; Arima A; Taniguchi M
    Sci Rep; 2013 Nov; 3():3326. PubMed ID: 24270238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Highly Sensitive Strain Sensor Using Area-Arrayed Graphene Nanoribbons.
    Suzuki K; Nakagawa R; Zhang Q; Miura H
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34203546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.