These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35168321)

  • 1. Spontaneous Imbibition in Paper-Based Microfluidic Devices: Experiments and Numerical Simulations.
    Wang Y; Ye D; Zhu X; Yang Y; Qin C; Chen R; Liao Q
    Langmuir; 2022 Mar; 38(8):2677-2685. PubMed ID: 35168321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives.
    Channon RB; Nguyen MP; Henry CS; Dandy DS
    Anal Chem; 2019 Jul; 91(14):8966-8972. PubMed ID: 31276368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous Imbibition of Capillaries under the End Effect and Wetting Hysteresis.
    Zhang L; Wang K; An H; Li G; Su Y; Zhang W; Yang X
    ACS Omega; 2022 Feb; 7(5):4363-4371. PubMed ID: 35155929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet Imbibition into Paper Coating Layer: Pore-Network Modeling Simulation.
    Yin X; Aslannejad H; de Vries ET; Raoof A; Hassanizadeh SM
    Transp Porous Media; 2018; 125(2):239-258. PubMed ID: 30393415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wettability-defined droplet imbibition in ceramic mesopores.
    Khalil A; Schäfer F; Postulka N; Stanzel M; Biesalski M; Andrieu-Brunsen A
    Nanoscale; 2020 Dec; 12(47):24228-24236. PubMed ID: 33291122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review.
    Nadar SS; Patil PD; Tiwari MS; Ahirrao DJ
    Crit Rev Biotechnol; 2021 Nov; 41(7):1046-1080. PubMed ID: 33730940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Barrier-Free Microfluidic Paper Analytical Devices for Multiplex Colorimetric Detection of Analytes.
    Chauhan A; Toley BJ
    Anal Chem; 2021 Jun; 93(25):8954-8961. PubMed ID: 34126741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of Paper-Based Bi-Material Cantilever Actuator for Microfluidic Biosensors.
    Kumar A; Heidari-Bafroui H; Rahmani N; Anagnostopoulos C; Faghri M
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates.
    Mohammadi S; Busa LS; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Anal Bioanal Chem; 2016 Nov; 408(27):7559-7563. PubMed ID: 27544520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of energy dissipation and asymmetric wettability in spontaneous imbibition dynamics in a nanochannel.
    A H; Yang Z; Hu R; Chen YF
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1023-1035. PubMed ID: 34571292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Measurement of Parameters Governing Flow Rates and Partial Saturation in Paper-Based Microfluidic Devices.
    Rath D; Sathishkumar N; Toley BJ
    Langmuir; 2018 Jul; 34(30):8758-8766. PubMed ID: 29969273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Effects of Wettability and Pressure in Shale Matrix Nanopore Imbibition during Shut-in Process by Molecular Dynamics Simulations.
    Jiang W; Lv W; Jia N; Lu X; Wang L; Wang K; Mei Y
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary imbibition and flow of wetting liquid in irregular capillaries: A 100-year review.
    Cai J; Chen Y; Liu Y; Li S; Sun C
    Adv Colloid Interface Sci; 2022 Jun; 304():102654. PubMed ID: 35468356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical microfluidic paper-based analytical devices for cancer biomarker detection: From 2D to 3D sensing systems.
    Ebrahimi G; Pakchin PS; Mota A; Omidian H; Omidi Y
    Talanta; 2023 May; 257():124370. PubMed ID: 36858013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics.
    Asci Erkocyigit B; Ozufuklar O; Yardim A; Guler Celik E; Timur S
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triggering interfacial instabilities during forced imbibition by adjusting the aspect ratio in depth-variable microfluidic porous media.
    Lei W; Lu X; Gong W; Wang M
    Proc Natl Acad Sci U S A; 2023 Dec; 120(50):e2310584120. PubMed ID: 38048464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances In the development of enzymatic paper-based microfluidic biosensors.
    Aghababaie M; Foroushani ES; Changani Z; Gunani Z; Mobarakeh MS; Hadady H; Khedri M; Maleki R; Asadnia M; Razmjou A
    Biosens Bioelectron; 2023 Apr; 226():115131. PubMed ID: 36804663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage.
    Chen C; Gao C; Zhuang L; Li X; Wu P; Dong J; Lu J
    Langmuir; 2010 Jun; 26(12):9533-8. PubMed ID: 20225880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.