These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35168321)

  • 21. Factors influencing residual air saturation during consecutive imbibition processes in an air-water two-phase fine sandy medium - A laboratory-scale experimental study.
    Huang W; Li Y; Du Y; He X; Li C; Xi J; Yang Y; Wu X; Liu W
    J Contam Hydrol; 2024 Sep; 266():104416. PubMed ID: 39236379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic flow delay through passive wax valves for paper-based analytical devices.
    Meng H; Chen C; Zhu Y; Li Z; Ye F; Ho JWK; Chen H
    Lab Chip; 2021 Oct; 21(21):4166-4176. PubMed ID: 34541589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaling of spontaneous imbibition data with wettability included.
    Li K
    J Contam Hydrol; 2007 Jan; 89(3-4):218-30. PubMed ID: 17081652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous imbibition of a liquid film wetting a wall-mounted cylinder corner.
    Suo S
    Soft Matter; 2024 Jan; 20(3):578-587. PubMed ID: 38131473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensory materials for microfluidic paper based analytical devices - A review.
    Selvakumar B; Kathiravan A
    Talanta; 2021 Dec; 235():122733. PubMed ID: 34517601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis.
    Zhang T; Ding F; Yang Y; Zhao G; Zhang C; Wang R; Huang X
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imbibition of Newtonian Fluids in Paper-like Materials with the Infinitesimal Control Volume Method.
    Song K; Huang R; Hu X
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous Imbibition and Evaporation in Rocks at the Nanometer Scale.
    Wensink G; Schröer L; Dell HP; Cnudde V; Rücker M
    Energy Fuels; 2023 Dec; 37(23):18713-18721. PubMed ID: 38094911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
    Rath D; Toley BJ
    ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in Paper-Based Analytical Devices.
    Ozer T; McMahon C; Henry CS
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):85-109. PubMed ID: 31986055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications.
    Wang M; Cui J; Wang Y; Yang L; Jia Z; Gao C; Zhang H
    J Agric Food Chem; 2022 Jul; 70(27):8188-8206. PubMed ID: 35786878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid segmentation and sensitive analysis of CRP with paper-based microfluidic device using machine learning.
    Ning Q; Zheng W; Xu H; Zhu A; Li T; Cheng Y; Feng S; Wang L; Cui D; Wang K
    Anal Bioanal Chem; 2022 May; 414(13):3959-3970. PubMed ID: 35352162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Geometry and Surrounding Conditions on Fluid Flow in Paper-Based Devices.
    Walji N; MacDonald BD
    Micromachines (Basel); 2016 Apr; 7(5):. PubMed ID: 30404248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic Pore Network Modeling of Imbibition in Real Porous Media with Corner Film Flow.
    Zhao J; Zhang G; Wu K; Qin F; Fei L; Derome D; Carmeliet J
    Langmuir; 2024 Apr; 40(14):7364-7374. PubMed ID: 38544367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis.
    de Oliveira RAG; Camargo F; Pesquero NC; Faria RC
    Anal Chim Acta; 2017 Mar; 957():40-46. PubMed ID: 28107832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heat release at the wetting front during capillary filling of cellulosic micro-substrates.
    Terzis A; Roumeli E; Weishaupt K; Brack S; Aslannejad H; Groß J; Hassanizadeh SM; Helmig R; Weigand B
    J Colloid Interface Sci; 2017 Oct; 504():751-757. PubMed ID: 28623700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid Assembly of Cellulose Microfibers into Translucent and Flexible Microfluidic Paper-Based Analytical Devices via Wettability Patterning.
    Ma P; Wang S; Wang J; Wang Y; Dong Y; Li S; Su H; Chen P; Feng X; Li Y; Du W; Liu BF
    Anal Chem; 2022 Oct; 94(39):13332-13341. PubMed ID: 36121740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pore-Scale Modeling of the Effect of Wettability on Two-Phase Flow Properties for Newtonian and Non-Newtonian Fluids.
    Tembely M; Alameri WS; AlSumaiti AM; Jouini MS
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distance versus Capillary Flow Dynamics-Based Detection Methods on a Microfluidic Paper-Based Analytical Device (μPAD).
    Chung S; Jennings CM; Yoon JY
    Chemistry; 2019 Oct; 25(57):13070-13077. PubMed ID: 31157465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.