These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35168344)
1. A nearsighted force-training approach to systematically generate training data for the machine learning of large atomic structures. Zeng C; Chen X; Peterson AA J Chem Phys; 2022 Feb; 156(6):064104. PubMed ID: 35168344 [TBL] [Abstract][Full Text] [Related]
2. Machine learning transferable atomic forces for large systems from underconverged molecular fragments. Herbold M; Behler J Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning Adaptive Basis Sets for Efficient Large Scale Density Functional Theory Simulation. Schütt O; VandeVondele J J Chem Theory Comput; 2018 Aug; 14(8):4168-4175. PubMed ID: 29957943 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of local structure into kriging models for the prediction of atomistic properties in the water decamer. Davie SJ; Di Pasquale N; Popelier PL J Comput Chem; 2016 Oct; 37(27):2409-22. PubMed ID: 27535711 [TBL] [Abstract][Full Text] [Related]
6. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials. Herbold M; Behler J J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596 [TBL] [Abstract][Full Text] [Related]
7. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks. Sun G; Sautet P J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216 [TBL] [Abstract][Full Text] [Related]
9. Lightweight Extendable Stacking Framework for Structure Classification in Atomistic Simulations. Deng Y; Wang Y; Xu K; Wang Y J Chem Theory Comput; 2023 Nov; 19(22):8332-8339. PubMed ID: 37967366 [TBL] [Abstract][Full Text] [Related]
10. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5. Eckhoff M; Behler J J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097 [TBL] [Abstract][Full Text] [Related]
11. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
12. The potential for machine learning in hybrid QM/MM calculations. Zhang YJ; Khorshidi A; Kastlunger G; Peterson AA J Chem Phys; 2018 Jun; 148(24):241740. PubMed ID: 29960374 [TBL] [Abstract][Full Text] [Related]
13. Robustness of Local Predictions in Atomistic Machine Learning Models. Chong S; Grasselli F; Ben Mahmoud C; Morrow JD; Deringer VL; Ceriotti M J Chem Theory Comput; 2023 Nov; 19(22):8020-8031. PubMed ID: 37948446 [TBL] [Abstract][Full Text] [Related]
14. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations. Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192 [TBL] [Abstract][Full Text] [Related]
16. Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure Analysis: From Isolated Atoms to Trends in AB5 Intermetallics. Berns VM; Engelkemier J; Guo Y; Kilduff BJ; Fredrickson DC J Chem Theory Comput; 2014 Aug; 10(8):3380-92. PubMed ID: 26588306 [TBL] [Abstract][Full Text] [Related]
17. Accelerating atomistic simulations with piecewise machine-learned Zhang Y; Hu C; Jiang B Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743 [TBL] [Abstract][Full Text] [Related]
18. Electronic structure interpolation via atomic orbitals. Chen M; Guo GC; He L J Phys Condens Matter; 2011 Aug; 23(32):325501. PubMed ID: 21795782 [TBL] [Abstract][Full Text] [Related]
19. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms. Cakır D; Gülseren O J Phys Condens Matter; 2012 Aug; 24(30):305301. PubMed ID: 22763370 [TBL] [Abstract][Full Text] [Related]
20. Acceleration of saddle-point searches with machine learning. Peterson AA J Chem Phys; 2016 Aug; 145(7):074106. PubMed ID: 27544086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]