BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 35168785)

  • 61. The
    Grafskaia E; Pavlova E; Babenko VV; Latsis I; Malakhova M; Lavrenova V; Bashkirov P; Belousov D; Klinov D; Lazarev V
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992666
    [TBL] [Abstract][Full Text] [Related]  

  • 62. ANTIMIC: a database of antimicrobial sequences.
    Brahmachary M; Krishnan SP; Koh JL; Khan AM; Seah SH; Tan TW; Brusic V; Bajic VB
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D586-9. PubMed ID: 14681487
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria.
    Moghadam MT; Mojtahedi A; Moghaddam MM; Fasihi-Ramandi M; Mirnejad R
    Appl Microbiol Biotechnol; 2022 Jun; 106(11):3879-3893. PubMed ID: 35604438
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording.
    Priyadarshini D; Ivica J; Separovic F; de Planque MRR
    Biophys Chem; 2022 Feb; 281():106721. PubMed ID: 34808479
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of Secondary Structure and Side Chain Length of Hydrophobic Amino Acid Residues on the Antimicrobial Activity and Toxicity of 14-Residue-Long de novo AMPs.
    Pandit G; Chowdhury N; Abdul Mohid S; Bidkar AP; Bhunia A; Chatterjee S
    ChemMedChem; 2021 Jan; 16(2):355-367. PubMed ID: 33026188
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability.
    Lai Z; Yuan X; Chen H; Zhu Y; Dong N; Shan A
    Biotechnol Adv; 2022 Oct; 59():107962. PubMed ID: 35452776
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization.
    Hajji M; Jellouli K; Hmidet N; Balti R; Sellami-Kamoun A; Nasri M
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):805-13. PubMed ID: 20440534
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Highly Potent Antibacterial Organometallic Peptide Conjugates.
    Albada B; Metzler-Nolte N
    Acc Chem Res; 2017 Oct; 50(10):2510-2518. PubMed ID: 28953347
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides.
    Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK
    Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Antimicrobial Peptides: An Overview of their Structure, Function and Mechanism of Action.
    Zhang R; Xu L; Dong C
    Protein Pept Lett; 2022; 29(8):641-650. PubMed ID: 35702771
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modulation of free energy landscapes as a strategy for the design of antimicrobial peptides.
    Hassan SA; Steinbach PJ
    J Biol Phys; 2022 Jun; 48(2):151-166. PubMed ID: 35419659
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 'Targeting' the search: An upgraded structural and functional repository of antimicrobial peptides for biofilm studies (B-AMP v2.0) with a focus on biofilm protein targets.
    Ravichandran S; Avatapalli S; Narasimhan Y; Kaushik KS; Yennamalli RM
    Front Cell Infect Microbiol; 2022; 12():1020391. PubMed ID: 36329825
    [TBL] [Abstract][Full Text] [Related]  

  • 73. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Augmentation of the antibacterial activities of Pt5-derived antimicrobial peptides (AMPs) by amino acid substitutions: Design of novel AMPs against MDR bacteria.
    Wang Y; Cui P; Zhang Y; Yang Q; Zhang S
    Fish Shellfish Immunol; 2018 Jun; 77():100-111. PubMed ID: 29567140
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Animal Venom Peptides: Potential for New Antimicrobial Agents.
    Primon-Barros M; José Macedo A
    Curr Top Med Chem; 2017; 17(10):1119-1156. PubMed ID: 27697042
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.
    Sumi CD; Yang BW; Yeo IC; Hahm YT
    Can J Microbiol; 2015 Feb; 61(2):93-103. PubMed ID: 25629960
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbial Cationic Peptides as a Natural Defense Mechanism against Insect Antimicrobial Peptides.
    Vo TD; Spahn C; Heilemann M; Bode HB
    ACS Chem Biol; 2021 Mar; 16(3):447-451. PubMed ID: 33596038
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features.
    Wang G; Zietz CM; Mudgapalli A; Wang S; Wang Z
    Protein Sci; 2022 Jan; 31(1):92-106. PubMed ID: 34529321
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria.
    Ageitos JM; Sánchez-Pérez A; Calo-Mata P; Villa TG
    Biochem Pharmacol; 2017 Jun; 133():117-138. PubMed ID: 27663838
    [TBL] [Abstract][Full Text] [Related]  

  • 80. APD2: the updated antimicrobial peptide database and its application in peptide design.
    Wang G; Li X; Wang Z
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D933-7. PubMed ID: 18957441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.