These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 35169688)

  • 1. Machine learning for multi-omics data integration in cancer.
    Cai Z; Poulos RC; Liu J; Zhong Q
    iScience; 2022 Feb; 25(2):103798. PubMed ID: 35169688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using machine learning approaches for multi-omics data analysis: A review.
    Reel PS; Reel S; Pearson E; Trucco E; Jefferson E
    Biotechnol Adv; 2021; 49():107739. PubMed ID: 33794304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomarker discovery studies for patient stratification using machine learning analysis of omics data: a scoping review.
    Glaab E; Rauschenberger A; Banzi R; Gerardi C; Garcia P; Demotes J
    BMJ Open; 2021 Dec; 11(12):e053674. PubMed ID: 34873011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing drug-response prediction using multi-modal and -omics machine learning integration (MOMLIN): a case study on breast cancer clinical data.
    Rashid MM; Selvarajoo K
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38904542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Machine Learning-Based Approach Using Multi-omics Data to Predict Metabolic Pathways.
    Niranjan V; Uttarkar A; Kaul A; Varghese M
    Methods Mol Biol; 2023; 2553():441-452. PubMed ID: 36227554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics data integration approaches for precision oncology.
    Correa-Aguila R; Alonso-Pupo N; Hernández-Rodríguez EW
    Mol Omics; 2022 Jul; 18(6):469-479. PubMed ID: 35470819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers.
    Martin-Hernandez R; Espeso-Gil S; Domingo C; Latorre P; Hervas S; Hernandez Mora JR; Kotelnikova E
    Front Mol Biosci; 2023; 10():1258902. PubMed ID: 38028548
    [No Abstract]   [Full Text] [Related]  

  • 9. A Detailed Catalogue of Multi-Omics Methodologies for Identification of Putative Biomarkers and Causal Molecular Networks in Translational Cancer Research.
    Vlachavas EI; Bohn J; Ückert F; Nürnberg S
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning-based analysis of multi-omics data on the cloud for investigating gene regulations.
    Oh M; Park S; Kim S; Chae H
    Brief Bioinform; 2021 Jan; 22(1):66-76. PubMed ID: 32227074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning: its challenges and opportunities in plant system biology.
    Hesami M; Alizadeh M; Jones AMP; Torkamaneh D
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3507-3530. PubMed ID: 35575915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparisons of Forecasting for Survival Outcome for Head and Neck Squamous Cell Carcinoma by using Machine Learning Models based on Multi-omics.
    Mo L; Su Y; Yuan J; Xiao Z; Zhang Z; Lan X; Huang D
    Curr Genomics; 2022 Jun; 23(2):94-108. PubMed ID: 36778975
    [No Abstract]   [Full Text] [Related]  

  • 16. Integration strategies of multi-omics data for machine learning analysis.
    Picard M; Scott-Boyer MP; Bodein A; Périn O; Droit A
    Comput Struct Biotechnol J; 2021; 19():3735-3746. PubMed ID: 34285775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools.
    Nicora G; Vitali F; Dagliati A; Geifman N; Bellazzi R
    Front Oncol; 2020; 10():1030. PubMed ID: 32695678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretable machine learning methods for predictions in systems biology from omics data.
    Sidak D; Schwarzerová J; Weckwerth W; Waldherr S
    Front Mol Biosci; 2022; 9():926623. PubMed ID: 36387282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architectures and accuracy of artificial neural network for disease classification from omics data.
    Yu H; Samuels DC; Zhao YY; Guo Y
    BMC Genomics; 2019 Mar; 20(1):167. PubMed ID: 30832569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning: A New Prospect in Multi-Omics Data Analysis of Cancer.
    Arjmand B; Hamidpour SK; Tayanloo-Beik A; Goodarzi P; Aghayan HR; Adibi H; Larijani B
    Front Genet; 2022; 13():824451. PubMed ID: 35154283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.