These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35169770)

  • 21. Effect of Exoskeletal-Assisted Walking on Soft Tissue Body Composition in Persons With Spinal Cord Injury.
    Asselin P; Cirnigliaro CM; Kornfeld S; Knezevic S; Lackow R; Elliott M; Bauman WA; Spungen AM
    Arch Phys Med Rehabil; 2021 Feb; 102(2):196-202. PubMed ID: 33171129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Daily acute intermittent hypoxia combined with walking practice enhances walking performance but not intralimb motor coordination in persons with chronic incomplete spinal cord injury.
    Tan AQ; Sohn WJ; Naidu A; Trumbower RD
    Exp Neurol; 2021 Jun; 340():113669. PubMed ID: 33647273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rehabilitation of Acute Vs. Chronic Patients With Spinal Cord Injury With a Neurologically Controlled Hybrid Assistive Limb Exoskeleton: Is There a Difference in Outcome?
    Zieriacks A; Aach M; Brinkemper A; Koller D; Schildhauer TA; Grasmücke D
    Front Neurorobot; 2021; 15():728327. PubMed ID: 34776919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 25. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial.
    Gorgey AS; Lai RE; Khalil RE; Rivers J; Cardozo C; Chen Q; Lesnefsky EJ
    J Appl Physiol (1985); 2021 Jul; 131(1):265-276. PubMed ID: 33982590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series.
    Gorgey AS; Wade R; Sumrell R; Villadelgado L; Khalil RE; Lavis T
    Top Spinal Cord Inj Rehabil; 2017; 23(3):245-255. PubMed ID: 29339900
    [No Abstract]   [Full Text] [Related]  

  • 27. Cardiorespiratory Responses to 10 Weeks of Exoskeleton-Assisted Overground Walking Training in Chronic Nonambulatory Patients with Spinal Cord Injury.
    Park JH; Kim HS; Jang SH; Hyun DJ; Park SI; Yoon J; Lim H; Kim MJ
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential Effects of an Exoskeleton-Assisted Overground Walking Program for Individuals With Spinal Cord Injury Who Uses a Wheelchair on Imaging and Serum Markers of Bone Strength: Pre-Post Study.
    Bass A; Morin SN; Guidea M; Lam JTAT; Karelis AD; Aubertin-Leheudre M; Gagnon DH;
    JMIR Rehabil Assist Technol; 2024 Jan; 11():e53084. PubMed ID: 38163294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Safety and Feasibility of Exoskeletal-Assisted Walking in Acute Rehabilitation After Spinal Cord Injury.
    McIntosh K; Charbonneau R; Bensaada Y; Bhatiya U; Ho C
    Arch Phys Med Rehabil; 2020 Jan; 101(1):113-120. PubMed ID: 31568761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Wearable Powered Exoskeletal Training on Functional Mobility, Physiological Health and Quality of Life in Non-ambulatory Spinal Cord Injury Patients.
    Kim HS; Park JH; Lee HS; Lee JY; Jung JW; Park SB; Hyun DJ; Park S; Yoon J; Lim H; Choi YY; Kim MJ
    J Korean Med Sci; 2021 Mar; 36(12):e80. PubMed ID: 33783145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait Training with Robotic Exoskeleton Assisted Rehabilitation System in Patients with Incomplete Traumatic and Non-Traumatic Spinal Cord Injury: A Pilot Study and Review of Literature.
    Gupta A; Prakash NB; Honavar PR
    Ann Indian Acad Neurol; 2023 Jan; 26(Suppl 1):S26-S31. PubMed ID: 37092019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis.
    Miller LE; Zimmermann AK; Herbert WG
    Med Devices (Auckl); 2016; 9():455-66. PubMed ID: 27042146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.
    Gagnon DH; Vermette M; Duclos C; Aubertin-Leheudre M; Ahmed S; Kairy D
    Disabil Rehabil Assist Technol; 2019 Feb; 14(2):138-145. PubMed ID: 29256640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial.
    Gorgey AS; Khalil RE; Davis JC; Carter W; Gill R; Rivers J; Khan R; Goetz LL; Castillo T; Lavis T; Sima AP; Lesnefsky EJ; Cardozo CC; Adler RA
    Trials; 2019 Aug; 20(1):526. PubMed ID: 31443727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Safety and feasibility of exoskeleton-assisted walking during acute/sub-acute SCI in an inpatient rehabilitation facility: A single-group preliminary study.
    Delgado AD; Escalon MX; Bryce TN; Weinrauch W; Suarez SJ; Kozlowski AJ
    J Spinal Cord Med; 2020 Sep; 43(5):657-666. PubMed ID: 31603395
    [No Abstract]   [Full Text] [Related]  

  • 37. Supplemental Stimulation Improves Swing Phase Kinematics During Exoskeleton Assisted Gait of SCI Subjects With Severe Muscle Spasticity.
    Ekelem A; Goldfarb M
    Front Neurosci; 2018; 12():374. PubMed ID: 29910710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial.
    Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A
    Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Exoskeletal-Assisted Walking on Spinal Cord Injury Bowel Function: Results from a Randomized Trial and Comparison to Other Physical Interventions.
    Gorman PH; Forrest GF; Asselin PK; Scott W; Kornfeld S; Hong E; Spungen AM
    J Clin Med; 2021 Mar; 10(5):. PubMed ID: 33801165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.