These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35169770)

  • 41. Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial.
    Rodríguez-Fernández A; Lobo-Prat J; Tarragó R; Chaverri D; Iglesias X; Guirao-Cano L; Font-Llagunes JM
    Sci Rep; 2022 Nov; 12(1):19150. PubMed ID: 36351989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury.
    Evans N; Hartigan C; Kandilakis C; Pharo E; Clesson I
    Top Spinal Cord Inj Rehabil; 2015; 21(2):122-32. PubMed ID: 26364281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity.
    Khan AS; Livingstone DC; Hurd CL; Duchcherer J; Misiaszek JE; Gorassini MA; Manns PJ; Yang JF
    J Neuroeng Rehabil; 2019 Nov; 16(1):145. PubMed ID: 31752911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spinal Cord Injury Functional Ambulation Profile: a preliminary look at responsiveness.
    Musselman KE; Yang JF
    Phys Ther; 2014 Feb; 94(2):240-50. PubMed ID: 24114437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of once weekly NMES training on knee extensors fatigue and body composition in a person with spinal cord injury.
    Gorgey AS; Caudill C; Khalil RE
    J Spinal Cord Med; 2016; 39(1):99-102. PubMed ID: 25615403
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cardiopulmonary function after robotic exoskeleton-assisted over-ground walking training of a patient with an incomplete spinal cord injury: Case report.
    Jang YC; Park HK; Han JY; Choi IS; Song MK
    Medicine (Baltimore); 2019 Dec; 98(50):e18286. PubMed ID: 31852105
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics.
    Bach Baunsgaard C; Vig Nissen U; Katrin Brust A; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Benito J; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F
    Spinal Cord; 2018 Feb; 56(2):106-116. PubMed ID: 29105657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Randomized and Controlled Crossover Study Investigating the Improvement of Walking and Posture Functions in Chronic Stroke Patients Using HAL Exoskeleton - The HALESTRO Study (HAL-Exoskeleton STROke Study).
    Sczesny-Kaiser M; Trost R; Aach M; Schildhauer TA; Schwenkreis P; Tegenthoff M
    Front Neurosci; 2019; 13():259. PubMed ID: 30983953
    [No Abstract]   [Full Text] [Related]  

  • 50. Effects of FES-Ambulation Training on Locomotor Function and Health-Related Quality of Life in Individuals With Spinal Cord Injury.
    Sharif H; Gammage K; Chun S; Ditor D
    Top Spinal Cord Inj Rehabil; 2014; 20(1):58-69. PubMed ID: 24574823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Feasibility, safety, and functional outcomes using the neurological controlled Hybrid Assistive Limb exoskeleton (HAL®) following acute incomplete and complete spinal cord injury - Results of 50 patients.
    Aach M; Schildhauer TA; Zieriacks A; Jansen O; Weßling M; Brinkemper A; Grasmücke D
    J Spinal Cord Med; 2023 Jul; 46(4):574-581. PubMed ID: 37083596
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Body Composition and Metabolic Assessment After Motor Complete Spinal Cord Injury: Development of a Clinically Relevant Equation to Estimate Body Fat.
    Gater DR; Farkas GJ; Dolbow DR; Berg A; Gorgey AS
    Top Spinal Cord Inj Rehabil; 2021; 27(1):11-22. PubMed ID: 33814880
    [No Abstract]   [Full Text] [Related]  

  • 53. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury.
    Sumrell RM; Nightingale TE; McCauley LS; Gorgey AS
    PLoS One; 2018; 13(8):e0203049. PubMed ID: 30169541
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuromotor and musculoskeletal responses to locomotor training for an individual with chronic motor complete AIS-B spinal cord injury.
    Forrest GF; Sisto SA; Barbeau H; Kirshblum SC; Wilen J; Bond Q; Bentson S; Asselin P; Cirnigliaro CM; Harkema S
    J Spinal Cord Med; 2008; 31(5):509-21. PubMed ID: 19086708
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Leisure-time physical activity, anthropometrics, and body composition as predictors of quality of life domains after spinal cord injury: an exploratory cross-sectional study.
    Mickens MN; Perrin P; Goldsmith JA; Khalil RE; Carter Iii WE; Gorgey AS
    Neural Regen Res; 2022 Jun; 17(6):1369-1375. PubMed ID: 34782584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combined Transcutaneous Spinal Stimulation and Locomotor Training to Improve Walking Function and Reduce Spasticity in Subacute Spinal Cord Injury: A Randomized Study of Clinical Feasibility and Efficacy.
    Estes S; Zarkou A; Hope JM; Suri C; Field-Fote EC
    J Clin Med; 2021 Mar; 10(6):. PubMed ID: 33799508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation.
    Calabrò RS; Billeri L; Ciappina F; Balletta T; Porcari B; Cannavò A; Pignolo L; Manuli A; Naro A
    Expert Rev Med Devices; 2022 Jan; 19(1):83-95. PubMed ID: 33616471
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study.
    Chang SH; Afzal T; ; Berliner J; Francisco GE
    Pilot Feasibility Stud; 2018; 4():62. PubMed ID: 29556414
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physiotherapy using a free-standing robotic exoskeleton for patients with spinal cord injury: a feasibility study.
    Postol N; Spratt NJ; Bivard A; Marquez J
    J Neuroeng Rehabil; 2021 Dec; 18(1):180. PubMed ID: 34953501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of Dorsiflexion Ability across Tasks in Persons with Subacute SCI after Combined Locomotor Training and Transcutaneous Spinal Stimulation.
    Hope JM; Field-Fote EC
    Bioengineering (Basel); 2023 Apr; 10(5):. PubMed ID: 37237598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.