These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 35170063)
1. Transfer learning for data-efficient abdominal muscle segmentation with convolutional neural networks. McSweeney DM; Henderson EG; van Herk M; Weaver J; Bromiley PA; Green A; McWilliam A Med Phys; 2022 May; 49(5):3107-3120. PubMed ID: 35170063 [TBL] [Abstract][Full Text] [Related]
2. Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks. Chen J; Li Y; Luna LP; Chung HW; Rowe SP; Du Y; Solnes LB; Frey EC Med Phys; 2021 Jul; 48(7):3860-3877. PubMed ID: 33905560 [TBL] [Abstract][Full Text] [Related]
3. A Deep Learning Model to Automate Skeletal Muscle Area Measurement on Computed Tomography Images. Amarasinghe KC; Lopes J; Beraldo J; Kiss N; Bucknell N; Everitt S; Jackson P; Litchfield C; Denehy L; Blyth BJ; Siva S; MacManus M; Ball D; Li J; Hardcastle N Front Oncol; 2021; 11():580806. PubMed ID: 34026597 [TBL] [Abstract][Full Text] [Related]
4. Accurate segmentation of head and neck radiotherapy CT scans with 3D CNNs: consistency is key. Henderson EGA; Vasquez Osorio EM; van Herk M; Brouwer CL; Steenbakkers RJHM; Green AF Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36893469 [No Abstract] [Full Text] [Related]
5. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment. Lee YS; Hong N; Witanto JN; Choi YR; Park J; Decazes P; Eude F; Kim CO; Chang Kim H; Goo JM; Rhee Y; Yoon SH Clin Nutr; 2021 Aug; 40(8):5038-5046. PubMed ID: 34365038 [TBL] [Abstract][Full Text] [Related]
6. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms. Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085 [TBL] [Abstract][Full Text] [Related]
7. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
8. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography. Ha J; Park T; Kim HK; Shin Y; Ko Y; Kim DW; Sung YS; Lee J; Ham SJ; Khang S; Jeong H; Koo K; Lee J; Kim KW Sci Rep; 2021 Nov; 11(1):21656. PubMed ID: 34737340 [TBL] [Abstract][Full Text] [Related]
10. Domain- and task-specific transfer learning for medical segmentation tasks. Zoetmulder R; Gavves E; Caan M; Marquering H Comput Methods Programs Biomed; 2022 Feb; 214():106539. PubMed ID: 34875512 [TBL] [Abstract][Full Text] [Related]
11. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images. Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139 [TBL] [Abstract][Full Text] [Related]
12. Tumor Segmentation in Intraoperative Fluorescence Images Based on Transfer Learning and Convolutional Neural Networks. Hou W; Zou L; Wang D Surg Innov; 2024 Jun; 31(3):291-306. PubMed ID: 38619039 [TBL] [Abstract][Full Text] [Related]
13. Assisted annotation in Deep LOGISMOS: Simultaneous multi-compartment 3D MRI segmentation of calf muscles. Zhang L; Guo Z; Zhang H; van der Plas E; Koscik TR; Nopoulos PC; Sonka M Med Phys; 2023 Aug; 50(8):4916-4929. PubMed ID: 36750977 [TBL] [Abstract][Full Text] [Related]
14. Accelerated muscle mass estimation from CT images through transfer learning. Yoon S; Kim TH; Jung YK; Kim Y BMC Med Imaging; 2024 Oct; 24(1):271. PubMed ID: 39385108 [TBL] [Abstract][Full Text] [Related]
15. Clinical evaluation of automated segmentation for body composition analysis on abdominal L3 CT slices in polytrauma patients. Ackermans LLGC; Volmer L; Timmermans QMMA; Brecheisen R; Damink SMWO; Dekker A; Loeffen D; Poeze M; Blokhuis TJ; Wee L; Ten Bosch JA Injury; 2022 Nov; 53 Suppl 3():S30-S41. PubMed ID: 35680433 [TBL] [Abstract][Full Text] [Related]
16. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
17. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification. Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426 [TBL] [Abstract][Full Text] [Related]
18. Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography. Park HJ; Shin Y; Park J; Kim H; Lee IS; Seo DW; Huh J; Lee TY; Park T; Lee J; Kim KW Korean J Radiol; 2020 Jan; 21(1):88-100. PubMed ID: 31920032 [TBL] [Abstract][Full Text] [Related]
19. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Burton W; Myers C; Rullkoetter P Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580 [TBL] [Abstract][Full Text] [Related]
20. Fully automated deep-learning section-based muscle segmentation from CT images for sarcopenia assessment. Islam S; Kanavati F; Arain Z; Da Costa OF; Crum W; Aboagye EO; Rockall AG Clin Radiol; 2022 May; 77(5):e363-e371. PubMed ID: 35260232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]