These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 35170097)

  • 1. Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics.
    Li G; Huang K; Deng J; Guo M; Cai M; Zhang Y; Guo CF
    Adv Mater; 2022 Apr; 34(15):e2200261. PubMed ID: 35170097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes.
    Zhou X; Rajeev A; Subramanian A; Li Y; Rossetti N; Natale G; Lodygensky GA; Cicoira F
    Acta Biomater; 2022 Feb; 139():296-306. PubMed ID: 34365040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics.
    Yu J; Wan R; Tian F; Cao J; Wang W; Liu Q; Yang H; Liu J; Liu X; Lin T; Xu J; Lu B
    Small; 2024 May; 20(19):e2308778. PubMed ID: 38063822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
    Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroconductive, Adhesive, Non-Swelling, and Viscoelastic Hydrogels for Bioelectronics.
    Han IK; Song KI; Jung SM; Jo Y; Kwon J; Chung T; Yoo S; Jang J; Kim YT; Hwang DS; Kim YS
    Adv Mater; 2023 Jan; 35(4):e2203431. PubMed ID: 35816086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly conductive tissue-like hydrogel interface through template-directed assembly.
    Chong J; Sung C; Nam KS; Kang T; Kim H; Lee H; Park H; Park S; Kang J
    Nat Commun; 2023 Apr; 14(1):2206. PubMed ID: 37072411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics.
    Kim S; Choi H; Son D; Shin M
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible Conductive Polymers with High Conductivity and High Stretchability.
    He H; Zhang L; Guan X; Cheng H; Liu X; Yu S; Wei J; Ouyang J
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26185-26193. PubMed ID: 31257845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue.
    Feig VR; Tran H; Lee M; Bao Z
    Nat Commun; 2018 Jul; 9(1):2740. PubMed ID: 30013027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEDOT:PSS hydrogels with high conductivity and biocompatibility for
    Yang T; Yang M; Xu C; Yang K; Su Y; Ye Y; Dou L; Yang Q; Ke W; Wang B; Luo Z
    J Mater Chem B; 2023 Apr; 11(14):3226-3235. PubMed ID: 36960662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Electrodes with Robust Conducting Hydrogel Coating for Neural Recording and Modulation.
    Zhang J; Wang L; Xue Y; Lei IM; Chen X; Zhang P; Cai C; Liang X; Lu Y; Liu J
    Adv Mater; 2023 Jan; 35(3):e2209324. PubMed ID: 36398434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness.
    Park K; Kang K; Kim J; Kim SD; Jin S; Shin M; Son D
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56395-56406. PubMed ID: 36484343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces.
    Zhou T; Yuk H; Hu F; Wu J; Tian F; Roh H; Shen Z; Gu G; Xu J; Lu B; Zhao X
    Nat Mater; 2023 Jul; 22(7):895-902. PubMed ID: 37322141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine induced multiple bonding in hyaluronic acid network to construct particle-free conductive hydrogel for reliable electro-biosensing.
    Zeng MZ; Wei D; Ding J; Tian Y; Wu XY; Chen ZH; Wu CH; Sun J; Yin HB; Fan HS
    Carbohydr Polym; 2023 Feb; 302():120403. PubMed ID: 36604075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics.
    O'Neill SJK; Huang Z; Ahmed MH; Boys AJ; Velasco-Bosom S; Li J; Owens RM; McCune JA; Malliaras GG; Scherman OA
    Adv Mater; 2023 Jan; 35(1):e2207634. PubMed ID: 36314408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics.
    Shin Y; Lee HS; Hong YJ; Sunwoo SH; Park OK; Choi SH; Kim DH; Lee S
    Sci Adv; 2024 Mar; 10(12):eadi7724. PubMed ID: 38507496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue adhesive hydrogel bioelectronics.
    Li S; Cong Y; Fu J
    J Mater Chem B; 2021 Jun; 9(22):4423-4443. PubMed ID: 33908586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications.
    Lo LW; Zhao J; Wan H; Wang Y; Chakrabartty S; Wang C
    ACS Appl Mater Interfaces; 2021 May; 13(18):21693-21702. PubMed ID: 33926183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsically Nonswellable Multifunctional Hydrogel with Dynamic Nanoconfinement Networks for Robust Tissue-Adaptable Bioelectronics.
    Park J; Kim JY; Heo JH; Kim Y; Kim SA; Park K; Lee Y; Jin Y; Shin SR; Kim DW; Seo J
    Adv Sci (Weinh); 2023 Apr; 10(12):e2207237. PubMed ID: 36799540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.