These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35170614)

  • 1. A molecular simulation study into the stability of hydrated graphene nanochannels used in nanofluidics devices.
    Williams CD; Wei Z; Shaharudin MRB; Carbone P
    Nanoscale; 2022 Mar; 14(9):3467-3479. PubMed ID: 35170614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionized water confined in graphene nanochannels.
    de Aquino BRH; Ghorbanfekr-Kalashami H; Neek-Amal M; Peeters FM
    Phys Chem Chem Phys; 2019 May; 21(18):9285-9295. PubMed ID: 30931451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamic properties of stretched water in graphene nanochannels by molecular dynamics simulation: effects of stretching extent.
    Wu M; Wei W; Liu X; Liu K; Li S
    Phys Chem Chem Phys; 2019 Sep; 21(35):19163-19171. PubMed ID: 31433424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of water confined in a graphene nanochannel: dependence of friction on graphene chirality.
    Yang L; Guo Y
    Nanotechnology; 2020 Mar; 31(23):235702. PubMed ID: 32066118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Height-driven structure and thermodynamic properties of confined ionic liquids inside carbon nanochannels from molecular dynamics study.
    Wang C; Wang Y; Lu Y; He H; Huo F; Dong K; Wei N; Zhang S
    Phys Chem Chem Phys; 2019 Jun; 21(24):12767-12776. PubMed ID: 31020276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of van der Waals forces on droplet morphological transitions and solvation forces in nanochannels.
    Dutka F; Napiórkowski M
    J Phys Condens Matter; 2014 Jan; 26(3):035101. PubMed ID: 24285307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding flow enhancement in graphene-coated nanochannels.
    Jin Y; Tao R; Li Z
    Electrophoresis; 2019 Mar; 40(6):859-864. PubMed ID: 30575055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.
    Yang L; Guo Y; Diao D
    Phys Chem Chem Phys; 2017 May; 19(21):14048-14054. PubMed ID: 28518189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first-principles phase diagram of monolayer nanoconfined water.
    Kapil V; Schran C; Zen A; Chen J; Pickard CJ; Michaelides A
    Nature; 2022 Sep; 609(7927):512-516. PubMed ID: 36104556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically Converted Graphene Nanosheets for the Construction of Ion-Exclusion Nanochannel Membranes.
    Guan K; Jia Y; Lin Y; Wang S; Matsuyama H
    Nano Lett; 2021 Apr; 21(8):3495-3502. PubMed ID: 33830772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Insights into the Regulatable Interfacial Property and Flow Behavior of Confined Ionic Liquids in Graphene Nanochannels.
    Wang Y; Wang C; Zhang Y; Huo F; He H; Zhang S
    Small; 2019 Jul; 15(29):e1804508. PubMed ID: 30680916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-enhanced selectivity in nanoconfined ionic transport.
    Zhou K; Xu Z
    Nanoscale; 2020 Mar; 12(11):6512-6521. PubMed ID: 32154818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow of quasi-two dimensional water in graphene channels.
    Fang C; Wu X; Yang F; Qiao R
    J Chem Phys; 2018 Feb; 148(6):064702. PubMed ID: 29448779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative characterization of liquids flowing in geometrically controlled sub-100 nm nanofluidic channels.
    Kazoe Y; Ikeda K; Mino K; Morikawa K; Mawatari K; Kitamori T
    Anal Sci; 2023 Jun; 39(6):779-784. PubMed ID: 36884162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast water transport in graphene nanofluidic channels.
    Xie Q; Alibakhshi MA; Jiao S; Xu Z; Hempel M; Kong J; Park HG; Duan C
    Nat Nanotechnol; 2018 Mar; 13(3):238-245. PubMed ID: 29292381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ESR study of interfacial hydration layers of polypeptides in water-filled nanochannels and in vitrified bulk solvents.
    Lai YC; Chen YF; Chiang YW
    PLoS One; 2013; 8(6):e68264. PubMed ID: 23840841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the Structure and Dynamics of Ethanol-Water Binary Mixture Confined in Nanochannel by Mica and Graphene.
    Metya AK
    J Phys Chem B; 2022 Sep; 126(38):7385-7392. PubMed ID: 36126307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disjoining Pressure of Water in Nanochannels.
    Zou A; Poudel S; Gupta M; Maroo SC
    Nano Lett; 2021 Sep; 21(18):7769-7774. PubMed ID: 34460251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic Simulations of the Permeability and Dynamic Transportation Characteristics of Diamond Nanochannels.
    Li B; Dong B; Shi T; Zhan H; Zhang Y
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.