These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35170678)

  • 21. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans.
    de Castro Neto AL; da Silveira JF; Mortara RA
    Front Cell Infect Microbiol; 2021; 11():669079. PubMed ID: 33937106
    [No Abstract]   [Full Text] [Related]  

  • 22. Nucleoside diphosphate kinases (NDPKs) in animal development.
    Takács-Vellai K; Vellai T; Farkas Z; Mehta A
    Cell Mol Life Sci; 2015 Apr; 72(8):1447-62. PubMed ID: 25537302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An evolutionary analysis of trypanosomatid GP63 proteases.
    Ma L; Chen K; Meng Q; Liu Q; Tang P; Hu S; Yu J
    Parasitol Res; 2011 Oct; 109(4):1075-84. PubMed ID: 21503641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Affinity purification with metabolomic and proteomic analysis unravels diverse roles of nucleoside diphosphate kinases.
    Luzarowski M; Kosmacz M; Sokolowska E; Jasinska W; Willmitzer L; Veyel D; Skirycz A
    J Exp Bot; 2017 Jun; 68(13):3487-3499. PubMed ID: 28586477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular and biochemical studies on the hypoxanthine-guanine phosphoribosyltransferases of the pathogenic haemoflagellates.
    Ullman B; Carter D
    Int J Parasitol; 1997 Feb; 27(2):203-13. PubMed ID: 9088991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct binding of cytosolic NDP kinases to membrane lipids is regulated by nucleotides.
    Mitchell KA; Szabo G; de S Otero A
    Biochim Biophys Acta; 2009 Mar; 1793(3):469-76. PubMed ID: 19146889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases.
    Motta FN; Azevedo CDS; Neves BP; Araújo CN; Grellier P; Santana JM; Bastos IMD
    Biochimie; 2019 Dec; 167():207-216. PubMed ID: 31628976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleoside diphosphate kinase activity in soluble transducin preparations biochemical properties and possible role of transducin-beta as phosphorylated enzyme intermediate.
    Klinker JF; Seifert R
    Eur J Biochem; 1999 Apr; 261(1):72-80. PubMed ID: 10103035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diverse roles of nucleoside diphosphate kinase in genome stability and growth fitness.
    Kapoor I; Varshney U
    Curr Genet; 2020 Aug; 66(4):671-682. PubMed ID: 32249353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracellular Vesicles during TriTryps infection: Complexity and future challenges.
    Rossi IV; Ferreira Nunes MA; Vargas-Otalora S; da Silva Ferreira TC; Cortez M; Ramirez MI
    Mol Immunol; 2021 Apr; 132():172-183. PubMed ID: 33601226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the C-terminus and Kpn loop in the quaternary structure stability of nucleoside diphosphate kinase from Leishmania parasites.
    Vieira PS; de Giuseppe PO; de Oliveira AHC; Murakami MT
    J Struct Biol; 2015 Dec; 192(3):336-341. PubMed ID: 26410384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biology of kinetoplastid parasites: insights and challenges from genomics and post-genomics.
    Gull K
    Int J Parasitol; 2001 May; 31(5-6):443-52. PubMed ID: 11334928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strand asymmetry patterns in trypanosomatid parasites.
    Nilsson D; Andersson B
    Exp Parasitol; 2005 Mar; 109(3):143-9. PubMed ID: 15713445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origins of amino acid transporter loci in trypanosomatid parasites.
    Jackson AP
    BMC Evol Biol; 2007 Feb; 7():26. PubMed ID: 17319943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements.
    Bringaud F; Ghedin E; Blandin G; Bartholomeu DC; Caler E; Levin MJ; Baltz T; El-Sayed NM
    Mol Biochem Parasitol; 2006 Feb; 145(2):158-70. PubMed ID: 16257065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis of Trypanosoma cruzi and Leishmania interaction with their host(s): exploitation of immune and defense mechanisms by the parasite leading to persistence and chronicity, features reminiscent of immune system evasion strategies in cancer diseases.
    Ouaissi A; Ouaissi M
    Arch Immunol Ther Exp (Warsz); 2005; 53(2):102-14. PubMed ID: 15928579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Innate immunomodulation to trypanosomatid parasite infections.
    Dos-Santos AL; Carvalho-Kelly LF; Dick CF; Meyer-Fernandes JR
    Exp Parasitol; 2016 Aug; 167():67-75. PubMed ID: 27223816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases.
    Teixeira SM; de Paiva RM; Kangussu-Marcolino MM; Darocha WD
    Genet Mol Biol; 2012 Jan; 35(1):1-17. PubMed ID: 22481868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism.
    McGwire BS; Kulkarni MM
    Exp Parasitol; 2010 Nov; 126(3):397-405. PubMed ID: 20159013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subcellular localization of Nm23/NDPK A and B isoforms: a reflection of their biological function?
    Bosnar MH; Bago R; Cetković H
    Mol Cell Biochem; 2009 Sep; 329(1-2):63-71. PubMed ID: 19373546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.