BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 35170813)

  • 21. Assessing Contaminants of Emerging Concern in the Great Lakes Ecosystem: A Decade of Method Development and Practical Application.
    Ankley GT; Corsi SR; Custer CM; Ekman DR; Hummel SL; Kimbrough KL; Schoenfuss HL; Villeneuve DL
    Environ Toxicol Chem; 2023 Dec; 42(12):2506-2518. PubMed ID: 37642300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.
    Hutchinson TH; Lyons BP; Thain JE; Law RJ
    Mar Pollut Bull; 2013 Sep; 74(2):517-25. PubMed ID: 23820191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin.
    Davis JM; Ekman DR; Teng Q; Ankley GT; Berninger JP; Cavallin JE; Jensen KM; Kahl MD; Schroeder AL; Villeneuve DL; Jorgenson ZG; Lee KE; Collette TW
    Environ Toxicol Chem; 2016 Oct; 35(10):2493-2502. PubMed ID: 27027868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of high-throughput screening results to prioritize chemicals for potential adverse biological effects within a West Virginia watershed.
    Rose LD; Akob DM; Tuberty SR; Corsi SR; DeCicco LA; Colby JD; Martin DJ
    Sci Total Environ; 2019 Aug; 677():362-372. PubMed ID: 31059879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An integrated approach for identifying priority contaminant in the Great Lakes Basin - Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary areas of concern.
    Li S; Villeneuve DL; Berninger JP; Blackwell BR; Cavallin JE; Hughes MN; Jensen KM; Jorgenson Z; Kahl MD; Schroeder AL; Stevens KE; Thomas LM; Weberg MA; Ankley GT
    Sci Total Environ; 2017 Feb; 579():825-837. PubMed ID: 27866739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution, diffusive fluxes, and toxicity of heavy metals and PAHs in pore water profiles from the northern bays of Taihu Lake.
    Lei P; Zhang H; Shan B; Zhang B
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22072-22083. PubMed ID: 27541153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An "EAR" on Environmental Surveillance and Monitoring: A Case Study on the Use of Exposure-Activity Ratios (EARs) to Prioritize Sites, Chemicals, and Bioactivities of Concern in Great Lakes Waters.
    Blackwell BR; Ankley GT; Corsi SR; DeCicco LA; Houck KA; Judson RS; Li S; Martin MT; Murphy E; Schroeder AL; Smith ER; Swintek J; Villeneuve DL
    Environ Sci Technol; 2017 Aug; 51(15):8713-8724. PubMed ID: 28671818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity-- a chemical dataset for evaluating sediment quality guidelines.
    McCready S; Birch GF; Long ER
    Environ Int; 2006 May; 32(4):455-65. PubMed ID: 16337000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ambient sediment quality conditions in Minnesota lakes, USA: Effects of watershed parameters and aquatic health implications.
    Crane JL
    Sci Total Environ; 2017 Dec; 607-608():1320-1338. PubMed ID: 28738509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in Bolgoda and Beira Lakes, Sri Lanka.
    Pathiratne KA; De Silva OC; Hehemann D; Atkinson I; Wei R
    Bull Environ Contam Toxicol; 2007 Aug; 79(2):135-40. PubMed ID: 17522750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of a vulnerability index of exposure to chemicals of emerging concern in surface water and sediment of Great Lakes tributaries of the United States.
    Kiesling RL; Elliott SM; Kennedy JL; Hummel SL
    Sci Total Environ; 2022 Jul; 830():154618. PubMed ID: 35307448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathway-Based Approaches for Assessing Biological Hazards of Complex Mixtures of Contaminants: A Case Study in the Maumee River.
    Ankley GT; Berninger JP; Blackwell BR; Cavallin JE; Collette TW; Ekman DR; Fay KA; Feifarek DJ; Jensen KM; Kahl MD; Mosley JD; Poole ST; Randolph EC; Rearick D; Schroeder AL; Swintek J; Villeneuve DL
    Environ Toxicol Chem; 2021 Apr; 40(4):1098-1122. PubMed ID: 33270248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using spatial and temporal variability data to optimize sediment toxicity identification evaluation (TIE) study designs.
    Greenstein DJ; Parks AN; Bay SM
    Integr Environ Assess Manag; 2019 Mar; 15(2):248-258. PubMed ID: 30375166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal Distribution of Hydrophobic Organic Contaminants in Spiked-Sediment Toxicity Tests: Measuring Total and Freely Dissolved Concentrations in Porewater and Overlying Water.
    Hiki K; Fischer FC; Nishimori T; Watanabe H; Yamamoto H; Endo S
    Environ Toxicol Chem; 2021 Nov; 40(11):3148-3158. PubMed ID: 34432908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting toxicity to Hyalella azteca in pyrogenic-impacted sediments-Do we need to analyze for all 34 PAHs?
    Geiger SC; Azzolina NA; Nakles DV; Hawthorne SB
    Integr Environ Assess Manag; 2016 Jul; 12(3):493-9. PubMed ID: 26425831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Population impacts in white sucker (Catostomus commersonii) exposed to oil sands-derived contaminants in the Athabasca River.
    Arens CJ; Arens JC; Hogan NS; Kavanagh RJ; Berrue F; Van Der Kraak GJ; van den Heuvel MR
    Environ Toxicol Chem; 2017 Aug; 36(8):2058-2067. PubMed ID: 28075044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The temporal distribution, source and potential toxicity of polycyclic aromatic hydrocarbons in a sediment core from an urban lake in Wuhan, China.
    Lu Q; Yang Z; Wu L; Ruan X; Yang W
    Environ Sci Process Impacts; 2015 Apr; 17(4):825-34. PubMed ID: 25761569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo toxicities of sediment and surface water in an area near a major steel industry of Korea: endocrine disruption, reproduction, or survival effects combined with instrumental analysis.
    Kim S; Lee S; Kim C; Liu X; Seo J; Jung H; Ji K; Hong S; Park J; Khim JS; Yoon S; Lee W; Park J; Choi K
    Sci Total Environ; 2014 Feb; 470-471():1509-16. PubMed ID: 24016722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How Important is Bioturbation for Sediment-to-Water Flux of Polycyclic Aromatic Hydrocarbons in the Baltic Sea?
    Mustajärvi L; Nybom I; Eriksson-Wiklund AK; Eek E; Cornelissen G; Sobek A
    Environ Toxicol Chem; 2019 Aug; 38(8):1803-1810. PubMed ID: 31050018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and determination of the contribution of iron-steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China.
    Zhang L; Bai YS; Wang JZ; Peng SC; Chen TH; Yin DQ
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22037-22046. PubMed ID: 27541150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.