These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3517085)

  • 1. Organisation of lateral line and auditory areas in the midbrain of Xenopus laevis.
    Lowe DA
    J Comp Neurol; 1986 Mar; 245(4):498-513. PubMed ID: 3517085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connections of the auditory midbrain in a teleost fish, Cyprinus carpio.
    Echteler SM
    J Comp Neurol; 1984 Dec; 230(4):536-51. PubMed ID: 6520250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis laevis.
    Behrend O; Branoner F; Zhivkov Z; Ziehm U
    Eur J Neurosci; 2006 Feb; 23(3):729-44. PubMed ID: 16487154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish.
    Finger TE; Tong SL
    J Comp Neurol; 1984 Oct; 229(1):129-51. PubMed ID: 6490974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laminar organization of the afferent and efferent systems of the torus semicircularis of gymnotiform fish: morphological substrates for parallel processing in the electrosensory system.
    Carr CE; Maler L; Heiligenberg W; Sas E
    J Comp Neurol; 1981 Dec; 203(4):649-70. PubMed ID: 7035506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence of somatosensory and auditory projections in the avian torus semicircularis, including the central auditory nucleus.
    Wild JM
    J Comp Neurol; 1995 Aug; 358(4):465-86. PubMed ID: 7593743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Horseradish peroxidase study of tectal afferents in Xenopus laevis with special emphasis on their relationship to the lateral-line system.
    Zittlau KE; Claas B; Münz H
    Brain Behav Evol; 1988; 32(4):208-19. PubMed ID: 3233482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis.
    Zittlau KE; Claas B; Münz H; Görner P
    Neurosci Lett; 1985 Sep; 60(1):77-81. PubMed ID: 4058802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Afferents to the midbrain auditory center in the bullfrog, rana catesbeiana.
    Wilczynski W
    J Comp Neurol; 1981 May; 198(3):421-33. PubMed ID: 6972387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Electrophysiologic characteristics of representations of the auditory and somatosensory systems in the turtle midbrain].
    Khachunts AS
    Neirofiziologiia; 1982; 14(3):260-9. PubMed ID: 7110437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-unit study of lateral line cells in the optic tectum of Xenopus laevis: evidence for bimodal lateral line/optic units.
    Lowe DA
    J Comp Neurol; 1987 Mar; 257(3):396-404. PubMed ID: 3558896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cobalt study of medullary sensory projections from lateral line nerves, associated cutaneous nerves, and the VIIIth nerve in adult Xenopus.
    Altman JS; Dawes EA
    J Comp Neurol; 1983 Jan; 213(3):310-26. PubMed ID: 6187781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytoarchitecture of the torus semicircularis in the Tegu lizard, Tupinambis nigropunctatus.
    Browner RH; Rubinson K
    J Comp Neurol; 1977 Dec; 176(4):539-57. PubMed ID: 303647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain.
    Morest DK; Oliver DL
    J Comp Neurol; 1984 Jan; 222(2):209-36. PubMed ID: 6699208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesencephalic projections of the cochlear nucleus in the frog, Rana esculenta.
    Kulik A; Matesz K; Székely G
    Acta Biol Hung; 1994; 45(2-4):323-35. PubMed ID: 7725825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nucleus praeeminentialis: a Golgi study of a feedback center in the electrosensory system of gymnotid fish.
    Sas E; Maler L
    J Comp Neurol; 1983 Dec; 221(2):127-44. PubMed ID: 6655077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of neurons afferent to the optic tectum in longnose gars.
    Northcutt RG
    J Comp Neurol; 1982 Feb; 204(4):325-35. PubMed ID: 7061736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Golgi study of the cell types of the dorsal torus semicircularis of the electric fish Eigenmannia: functional and morphological diversity in the midbrain.
    Carr CE; Maler L
    J Comp Neurol; 1985 May; 235(2):207-40. PubMed ID: 3998210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brainstem afferents to the torus semicircularis of the Queensland cane toad (Bufo marinus).
    Pettigrew AG
    J Comp Neurol; 1981 Oct; 202(1):59-68. PubMed ID: 6793645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.