These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35170958)

  • 1. Impedimetric Chemosensing of Volatile Organic Compounds Released from Li-Ion Batteries.
    Kaur P; Bagchi S; Gribble D; Pol VG; Bhondekar AP
    ACS Sens; 2022 Feb; 7(2):674-683. PubMed ID: 35170958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.
    Li J; Wang G; Xu Z
    Waste Manag; 2016 Jun; 52():221-7. PubMed ID: 27021697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds.
    Badhulika S; Myung NV; Mulchandani A
    Talanta; 2014 Jun; 123():109-14. PubMed ID: 24725871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries.
    Diaz F; Wang Y; Weyhe R; Friedrich B
    Waste Manag; 2019 Feb; 84():102-111. PubMed ID: 30691881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.
    Luo JY; Cui WJ; He P; Xia YY
    Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEMS-Based Ionization Gas Sensors for VOCs with Array of Nanostructured Silicon Needles.
    Wang B; Dong XS; Wang Z; Wang YF; Hou ZY
    ACS Sens; 2020 Apr; 5(4):994-1001. PubMed ID: 32174111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a solid electrolyte CO(2) sensor for the analysis of standard volatile organic compound gases.
    Kida T; Seo MH; Kishi S; Kanmura Y; Yamazoe N; Shimanoe K
    Anal Chem; 2010 Apr; 82(8):3315-9. PubMed ID: 20337430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries.
    Gao Z; Rao S; Zhang T; Gao F; Xiao Y; Shali L; Wang X; Zheng Y; Chen Y; Zong Y; Li W; Chen Y
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103796. PubMed ID: 34923778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fire risk of portable batteries in their end-of-life: Investigation of the state of charge of waste lithium-ion batteries in Austria.
    Nigl T; Bäck T; Stuhlpfarrer S; Pomberger R
    Waste Manag Res; 2021 Sep; 39(9):1193-1199. PubMed ID: 33843368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes.
    Sandu G; Ernould B; Rolland J; Cheminet N; Brassinne J; Das PR; Filinchuk Y; Cheng L; Komsiyska L; Dubois P; Melinte S; Gohy JF; Lazzaroni R; Vlad A
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34865-34874. PubMed ID: 28910075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical waveguide sensor of volatile organic compounds based on PTA thin film.
    Abdurahman R; Yimit A; Ablat H; Mahmut M; Wang JD; Itoh K
    Anal Chim Acta; 2010 Jan; 658(1):63-7. PubMed ID: 20082775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries.
    Li H; Wang H; Xu Z; Wang K; Ge M; Gan L; Zhang Y; Tang Y; Chen S
    Small; 2021 Oct; 17(43):e2103679. PubMed ID: 34580989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery.
    Shi Y; Noelle DJ; Wang M; Le AV; Yoon H; Zhang M; Meng YS; Qiao Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30956-30963. PubMed ID: 27786445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene/poly (methyl methacrylate) electrochemical impedance-transduced chemiresistor for detection of volatile organic compounds in aqueous medium.
    Yavarinasab A; Janfaza S; Tasnim N; Tahmooressi H; Dalili A; Hoorfar M
    Anal Chim Acta; 2020 May; 1109():27-36. PubMed ID: 32252902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium-ion batteries: runaway risk of forming toxic compounds.
    Hammami A; Raymond N; Armand M
    Nature; 2003 Aug; 424(6949):635-6. PubMed ID: 12904779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Impedance of a Biological Tissue with PEDOT:PSS-Coated Metal Electrodes: Effect of Electrode Size on Sensing Efficiency.
    Koutsouras DA; Lingstedt LV; Lieberth K; Reinholz J; Mailänder V; Blom PWM; Gkoupidenis P
    Adv Healthc Mater; 2019 Dec; 8(23):e1901215. PubMed ID: 31701673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures.
    Chen S; Wang Z; Yan W
    J Hazard Mater; 2020 Dec; 400():123169. PubMed ID: 32574883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe
    Zhang E; Yan W; Zhou S; Ling M; Zhou H
    Nanotechnology; 2023 Jan; 34(13):. PubMed ID: 36571850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Langasite Crystal Microbalance Coated with Graphene Oxide-Platinum Nanocomposite as a Volatile Organic Compound Sensor: Detection and Discrimination Characteristics.
    Leong A; Saha T; Swamy V; Ramakrishnan N
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Si/SiO
    Park E; Kim J; Chung DJ; Park MS; Kim H; Kim JH
    ChemSusChem; 2016 Oct; 9(19):2754-2758. PubMed ID: 27572935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.